

AOC-16 PILOT STUDY EVALUATION REPORT

CALUMET MONTANA REFINING, LLC GREAT FALLS, MONTANA

January 2020

TABLE OF CONTENTS

1. 1.1 1.2 1.3	INTRODUCTION SOURCE AND PILOT TEST AREA DESCRIPTION REMEDIATION TECHNOLOGY DESCRIPTION PILOT TEST OVERVIEW AND OBJECTIVES	1 1 2 2
2. 2.1 2.2 2.2.1 2.2.2	PRE-PILOT TEST FIELD ACTIVITIES BOUNDARY SURVEY ALONG NORTH RIVER ROAD WELL INSTALLATION AND SAMPLING BIOSPARGING AND AS WELL INSTALLATION SVE WELL INSTALLATION	4 4 4 5
3. 3.1 3.2 3.2.1 3.3	PHYSICAL CHARACTERSTICS OF PILOT TEST AREA SURFACE CONDITIONS SUBSURFACE SOIL CHARACTERISTICS GEOLOGY BIOGEGRADATION CHEMISTRY	7 7 7 8
4. 4.1 4.1.1 4.2 4.2 4.2.3 4.2.4 4.2.5 4.3	PILOT TEST SETUP AND PROCEDURES EQUIPMENT PIPING PILOT TEST TRAILER AND EQUIPMENT PILOT TEST METHODS, PROCEDURES, AND MEASUREMENTS SVE - STEP-RATE TEST SVE - CONSTANT RATE TEST AIR DISCHARGE MONITORING QUALITY ASSURANCE/QUALITY CONTROL METHODS	11 11 11 12 13 13 13 14
5. 5.1 5.1.1 5.1.2 5.2 5.2.2 5.3.2	AS/SVE PILOT TEST DATA ANALYSIS AND RESULTS TRUCK RACK PILOT TEST AREA MW-64 NATIVE MATERIAL PILOT TEST AREA MW-22 PRT PILOT TEST AREA RIVER ROAD PILOT TEST AREA SVE STEP-RATE TESTING – MW-41 NATIVE MATERIAL PILOT TEST AREA MW-64 PRT PILOT TEST AREA	15 15 17 18 19 19
6.	PILOT TEST CONCULSIONS	20
7. 7.1	ALTERNATIVE IM REMEDIAL OPTIONS AND RECOMMENDATIONS TRUCK RACK AREA: DUAL PHASE EXTRACTION SYSTEM WITHIN EXISTING PRODUCT RECOVERY TRENCH REMEDIAL OPTION	22 22
7.2	RIVER ROAD MW-41 AREA: AS/SVE SYSTEM WITHIN AN ENGINEERED TRENCH REMEDIAL OPTION RIVER ROAD MW-41 AREA: PRODUCT RECOVERY AND PASSIVE TREATMENT TRENCH TECHNOLOGY WITH GRANULAR ACTIVATED CARBON AND OXYGEN AMENDMENTS REMEDIAL OPTION	23 23

8.	REFERENCES	26
7.6	RECOMMENDATIONS	25
	RECOVERY AND PASSIVE TREATMENT TRENCH	24
7.5	REMEDIAL ALTERNATIVE 2 – DPE IN THE PRT WITH PRODUCT	
	ENGINEERED TRENCH	24
7.4	REMEDIAL ALTERNATIVE 1 – DPE IN THE PRT WITH AS/SVE WITHIN AN	

LIST OF FIGURES

Figure 1: AOC-16 Pilot Test Areas Figure 2: AOC-16 Biosparging/AS/SVE Pilot Test Layout (MW-64 and MW-22 Areas) Figure 3: AOC-16 AS/SVE Pilot Test Layout (MW-41 Area) Figure 4: Estimated Extent of LNAPL on October 25, 2019 Figure 5: SVE-1 Step-Rate Test Applied Vacuum Response Curve Figure 6: SVE-1 Constant-Rate Test Radius of Influence Figure 7: SVE-2B Step-Rate Test Applied Vacuum Response Curve Figure 8: SVE-3 Step-Rate Test Applied Vacuum Response Curve Figure 9: Remedial Action Alternative 1 Figure 10: Remedial Action Alternative 2

LIST OF TABLES

Table 1: AOC-16 Pilot Test Well Construction Details and Horizontal Distance from Test Well

Table 2: Geotechnical Analysis in AOC-16 Pilot Test Areas

- Table 3: Microbial and Nutrient Analytical Results
- Table 4: AS-1 Step-Rate Test System Performance Data
- Table 5: SVE-1 Step-Rate Test System Performance Data
- Table 6: SVE-1 Constant-Rate Test Performance Data

Table 7: AS-2B Step-Rate Test System Performance Data

- Table 8: SVE-2B Step-Rate Test System Performance Data
- Table 9: AS-3 Step-Rate Test System Performance Data
- Table 10: SVE-3 Step-Rate Test System Performance Data
- Table 11: Summary of VOC Vapor Analytical Results
- Table 12: VOC Mass Removal Rates and Quantities
- Table 13: AOC-16 Summary of Remedial Action Alternative Costs

LIST OF APPENDICES

Appendix A: AOC-16 Pilot Test Boring Logs and Well Construction Diagrams

Appendix B: Geotechnical Laboratory Report

Appendix C: Soil and Groundwater Analytical Laboratory Reports

Appendix D: AS/SVE Equipment Process and Instrumentation Diagram

Appendix E: MDEQ-Air Quality Bureau De Minimis Notification Letter and Approval

Appendix F: Soil Vapor Analytical Laboratory Report

Appendix G: Updated AOC-16 Interim Measure Remedial Options Cost Estimate

LIST OF ACRONYMS

1,2-DCA	1,2-Dichlorethane
%RE	% reference emitter
AOC-16	Area of Concern 16
API	American Petroleum Institute
AS	air sparge
bgs	below ground surface
cm	centimeter
cm/sec	centimeters per second
CMR	Calumet Montana Refining
Consent Order	Corrective Action Administrative Order of Consent
DEQ-7 HHS	Montana DEQ-7 Human Health Standards - Groundwater
DPE	dual phase extraction
EPA	Environmental Protection Agency
EPH	Extractable Petroleum Hydrocarbon
ft/day	feet per day
ft-msl	feet above mean sea level
ft²/day	square feet per day
IM	interim measure
ISCO	in-situ chemical oxidation
ISCR	in-situ chemical reduction
ITRC	Interstate Technology Regulatory Council
LIF	laser-induced fluorescence
LNAPL	Light Non-Aqueous Phase Liquid
MDEQ	Montana Department of Environmental Quality
MPE	multi-phase extraction
NAPL	Non-aqueous Phase Liquid
NSZD	Natural Source Zone Depletion
OM&M	operation, maintenance and monitoring
OWS	oil-water separator
PID	Photoionization Detector
PLSS	Public Land Survey System
POTW	Publicly Owned Treatment Works
PPE	personal protective equipment
PRB	permeable reactive barrier
Ramboll	Ramboll US Corporation
RBCA	risk-based corrective action
RBSL	risk-based screening level
RFI	RCRA Facility Inspection
ROW	Right-of-Way
RTO	regenerative thermal oxidizer
scfm	standard cubic feet per minute
Site	CMR property east of 10 th Street NE
SVE	soil vapor extraction

SVOC	Semi-Volatile Organic Compound
µg/L	micrograms per liter
UVOST [®]	ultra-violet optical screening tool
VGAC	vapor phase granular activated carbon
VOC	Volatile Organic Compound
VPH	Volatile Petroleum Hydrocarbon
WWTP	waste water treatment plant

EXECUTIVE SUMMARY

In June 2019, an *Area of Concern 16 Interim Measure Evaluation (IM) Report* (CMR, 2019) was submitted to the Montana Department of Environmental Quality (MDEQ) where the selected IM remedy was biosparging and Air Sparging/Soil Vapor Extraction (AS/SVE) technologies. In order to verify remediation technology applicability and to collect additional site characterization data necessary to prepare the IM remedial system designs, pilot tests were completed in three areas downgradient of the historic releases of the truck loading rack in October 2019.

The biosparging and AS/SVE pilot tests completed in the MW-64, MW-22, and MW-41 areas indicate that biosparging, AS, and SVE within the native soils was not effective and application of these technologies as an IM to address the identified impacts at AOC-16 will likely be unsuccessful without modification to the native soil conditions. In the MW-64 area, hydrocarbon-degrading bacteria are present in groundwater indicating that subsurface conditions are favorable to support biodegradation of residual petroleum VOCs; however, an insufficient volume of water (or saturated aquifer thickness) is present to effectively oxygenate and distribute air within the saturated soils to effectively implement the biosparging technology. Furthermore, the presence of Light Non-Aqueous Phase Liquids (LNAPL) discovered at both the MW-64 and MW-22 test locations at the Truck Rack area will result in long operational times to address the LNAPL mass.

In the MW-41 Native Material Pilot Test Area, AS/SVE pilot tests were not successful due to the presence of very dense fine-grained soils (fine-grain sands, silts, and clays). The presence of the fine-grained silts and clays resulted in the inability to extract air through the soil formation resulting in little or no influence from the SVE and AS tests. The low permeability soils coupled with a highly variable or perched groundwater table and minimal evidence of subsurface air flow from the pilot testing indicates that the AS/SVE technology in the native soil materials will not be effective in achieving the goal of the IM in the MW-41 area.

AS and SVE testing performed within the backfill materials (e.g., trenched or fill material) within the Primary Recovery Trench (PRT) located in the MW-22 area determined that SVE is amenable for the extraction of vapor and LNAPL. This is likely due to the increased permeability from the disturbed soils within the PRT. The higher permeability soils allowed for air flow to be effectively distributed throughout the trench resulting in collection and capture of VOC, free phase and residual Non-Aqueous Phase Liquid (NAPL) present within the PRT. This was evident when approximately 15 gallons of LNAPL was collected during the SVE step-rate test at SVE-2B during one-hour of operation. AS within the trench was not successful due to insufficient volume of water to effectively sparge within the saturated soils or water column. Due to the presence of LNAPL within the PRT and increased permeability of the PRT materials as compared to corresponding native materials, the SVE VOC removal rate in the Truck Rack area achieved in PRT materials was approximately 37 times greater than that achieved in corresponding native materials.

The recommended alternative IM remedial approach for the AOC-16 is Dual Phase Extraction (DPE) in the existing Truck Dock PRT with product recovery wells and passive treatment trench along River Road. A DPE system within the existing PRT is the recommended remedial option for the Truck Dock area to effectively address the NAPL and petroleum related constituents present within the vadose zone, variable saturated conditions of the perched materials, and presence of a more extensive LNAPL area than previously understood. The SVE pilot test of the MW-22 PRT demonstrated the effectiveness of the DPE approach in this portion of the site. A triplet of contingency product recovery wells immediately upgradient of a passive treatment trench is recommended remedial option to address petroleum impacted dissolved phase perched groundwater downgradient of the AOC-16 Truck Rack and upgradient of River Road and the Missouri River. Monitoring wells adjacent and downgradient will also be required to monitor the effectiveness of the passive recovery trench.

SIGNATORY PAGE

I certify under penalty of law that this document and all attachments were prepared under my direct supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

IL DI	
In James and	

Signature: Name: Title: Date:

Wayne Leiker		
Vice President – Calumet Montana Refining, LLC		
1-9-20	_	

1. INTRODUCTION

Ramboll US Corporation (Ramboll) has prepared this Biosparging and Air Sparing/Soil Vapor Extraction Pilot Test Evaluation Report (the "Pilot Test Report") for the Calumet Great Falls Montana Refining (CMR) facility located at 1900 10th Street Northeast in Great Falls, Montana. This Report describes the completed field activities and results of the field-scale pilot tests (biosparging, air sparging [AS], and soil vapor extraction [SVE]) conducted from October 21 through 25, 2019 south of the Truck Loading Rack identified as Area of Concern 16 (AOC-16).

1.1 SOURCE AND PILOT TEST AREA DESCRIPTION

The CMR refinery, located at 1900 10th Street in Great Falls, Montana, is comprised of 82.7 acres of industrial/refinery operations and office buildings. The refinery produces gasoline, middle distillates, and asphalt for distribution in Washington, Montana, Idaho, and Alberta, Canada. AOC-16, referred to as the "Gasoline and Light Oil Loading Rack" or "truck loading rack," is located within an approximate 7.6-acre parcel (the "Site") to the east of the active refinery and is owned by CMR. The Public Land Survey System (PLSS) description of the area is the NW1/4 of the NE1/4, of Section 01, Township 20 North, Range 03 East, of Cascade County, Montana. AOC-16 encompasses approximately 1.3 acres and is within the truck loading rack in the northern portion of the Site, a CMR three-floored office building (CMR Office Building) is in the east portion and an access road, set down area and vegetation area in the southern portion of the Site. The truck loading rack (1020 Smelter Avenue NE in Black Eagle, Montana), accessed from Smelter Avenue NE, is secured by a 6foot chain-link fence. The property extends north to Mountain View Co-Op Cenex or Smelter Avenue NE, east to 11 Street NE, which is bounded by residential properties on the east side. To the south, the property is bounded by a railroad bed/loading area owned by a third-party, then by a Right-of-Way (ROW) and area owned by a separate third-party, and then the Missouri River. To the west, 10th Street NE bounds the property along with a thirdparty parcel, which operates a natural gas line transfer station.

Historic releases have been documented at or near AOC-16 since operation of the truck loading rack commenced. To capture released material in the subsurface, a Primary Recovery Trench (PRT) was installed in the 1990s and utilized into the early 2000s for light non-aqueous phase liquid (LNAPL) recovery from historical releases. The PRT is "L" shaped and extends approximately 100 feet in the north-south direction east of the third-property parcel operated by a natural gas company and 300 feet east-west along the southern CMR property boundary. According to PRT construction drawings dated May 3, 1995, a 4-inch diameter perforated pipe is installed the entire length of the trench.

In June 2019, an *Area of Concern 16 Interim Measure Evaluation (IM) Report* (CMR, 2019) was submitted to the Montana Department of Environmental Quality (MDEQ) where the selected IM remedy was biosparging and AS/SVE technologies. The MDEQ approved the selected technology shortly after document submission. As part of the selected remediation technology applicability, this pilot test was run to collect additional site characterization data necessary to prepare the IM remedial system designs. Pilot tests were completed in three

areas downgradient of the historic releases of the truck loading rack in October 2019 (Figure 1). A biosparging and AS/SVE pilot test was conducted just south of the truck loading rack, in native materials¹ adjacent to MW-64, an AS/SVE pilot test was conducted just south of the truck rack, in the PRT near MW-22, and an AS/SVE pilot test was conducted just north of River Road in native materials adjacent to MW-41.

1.2 REMEDIATION TECHNOLOGY DESCRIPTION

AS/SVE systems involve the injection of air (AS) below the water table to drive the mass transfer of dissolved- and sorbed-phase contaminant mass into the flowing air stream. The injected air travels upward through channels created in the saturated soil matrix; carrying the petroleum volatile organic compounds (PVOCs) removed from the groundwater into the vadose zone soil. In the unsaturated zone, a SVE system extracts the impacted air and discharges vapor or treated vapor to the atmosphere. Biosparging involves low-pressure air sparging for the primary purpose of adding oxygen to stimulate biodegradation of PVOCs in groundwater. A biproduct of the biosparging technology is in-situ aerobic biodegradation, and therefore, the biosparging technologies are typically paired with in-situ aerobic biodegradation. Soil vapors generated during biosparging are vented to the atmosphere via shallow wells installed above the water table.

1.3 PILOT TEST OVERVIEW AND OBJECTIVES

The objectives of the pilot tests were to verify that biosparging, AS, and/or SVE are feasible remedial technologies to stabilize and reduce hydrocarbon-related groundwater concentrations to below applicable standards and prevent migration of the dissolved-phase groundwater impacts in the areas immediately south of Truck Rack and immediately north of North River Road in the right-of-way (ROW) and to collect additional site characterization data necessary to prepare the IM remedial system designs. Presuming the pilot tests demonstrated effectiveness, pilot test results would be used to design a full-scale interim measure remedy. Additionally, the pilot tests were completed to quantify the extractable vapor-phase PVOCs and subsequent treatment requirements in each pilot test area.

This Pilot Test Report describes the test methods and procedures implemented during the biosparging and AS/SVE pilot tests, documents the test results, provides interpretations on the data, and evaluates the efficacy of biosparging and AS/SVE in the AOC-16 area. Due to geologic and hydraulic conditions observed during pre-pilot testing field activities, specific design data evaluated in this report are focused on the SVE portion of the pilot test and include:

- Horizontal and vertical pneumatic conductivity of the subsurface soil;
- Optimal subsurface air extraction flow rate;
- Subsurface vacuum and air-flow radius of influence (ROI);
- Subsurface air flow velocity versus distance from the extraction well;
- Estimated mass removal rate;
- Total VOC concentration in extracted soil vapor and air discharge/emission rates, and

¹ Non-engineered unconsolidated matrix consisting of either fill and/or native geologically deposited sediments.

• Potential variability in pneumatic performance throughout the vertical unsaturated soil profile in the MW-64 area.

2. PRE-PILOT TEST FIELD ACTIVITIES

Pre-pilot test field activities were completed at the Site from September 1 to October 20, 2019, to define the property boundaries, complete a utility locate, and install four sparging wells, four SVE wells, and three observation/monitoring wells. This work is discussed in this section.

2.1 BOUNDARY SURVEY ALONG NORTH RIVER ROAD

Prior to well installation and pilot testing activities along the North River Road ROW, a boundary survey was completed by a TD&H Engineering of Great Falls, a Montana licensed surveyor on September 3, 2019. The work was completed to ensure all work activities were completed on CMR property or private property with access granted via email.

2.2 WELL INSTALLATION AND SAMPLING

To complete the pilot tests, four sparging wells, four SVE wells, and three monitoring wells were installed. The following subsections describe the installation methods and materials of construction. Soil cuttings from well installation activities were containerized in properly labeled United States Department of Transportation (US DOT) -compliant 55-gallon drums and incorporated into CMR waste stream. Additionally, four existing monitoring wells were used as performance monitoring wells during pilot test activities. Well construction details for the existing and new wells are presented in Table 1. Boring logs and well construction diagrams are presented in Appendix A.

2.2.1 BIOSPARGING AND AS WELL INSTALLATION

Four biosparging/AS wells were installed to facilitate injection of air for the pilot test at the approximate locations shown on Figure 2 and Figure 3. The borings were completed using sonic drilling methods utilizing a 6-inch diameter core barrel with 7-inch diameter override casing. Soils were geologically logged and screened with a photoionization detector (PID). Originally, one sparging well was to be installed into the MW-22 PRT Pilot Test Area; however, initial sparging well AS-2A encountered less than 1.5 feet of saturated materials above the dusky red silt confining layer. A second sparging well, AS-2B, was installed approximately 2 feet south of AS-2A to the dusky red silt confining layer. Water and LNAPL were immediately observed in AS-2B and water and LNAPL were observed in AS-2A the following day.

The biosparging/AS wells were constructed with 2-inch diameter Schedule 40 polyvinyl chloride (PVC) well screens and riser pipe terminated just below the ground surface and protected with a flush-mount steel well vault concreted in-place (see Appendix A for well construction diagrams). The biosparging and AS well risers at the surface are threaded with a National Pipe Thread (NPT) tapered to facilitate the placement of an airtight locking cap and connection to the air sparge piping connections and equipment. The annular space surrounding the biosparging/AS wells screens were backfilled with silica sand pack to one foot above the top of the well screen. A minimum one-foot hydrated bentonite chip seal was placed within the annular space above the top of the sand pack. The remaining annular

space surrounding the well riser was backfilled with a cement seal to approximately onefoot below the surface. The grout was installed from the top of the bentonite seal upwards using a tremie pipe. The upper one foot was backfilled with cement and the well vault. Each AS/biosparging well was developed until water was relatively clear of sediment by using a peristaltic pump. Development fluids were containerized and disposed in the CMR facility wastewater treatment plant (WWTP) as directed by CMR personnel.

2.2.2 SVE WELL INSTALLATION

Four SVE wells were installed to facilitate soil vapor extraction for the pilot test at the approximate locations shown on Figure 2 and Figure 3. The borings were completed using sonic drilling methods utilizing a 6-inch diameter core barrel with 7-inch diameter override casing. Soils were geologically logged and screened with a PID. Originally, one SVE well was to be installed into the MW-22 PRT Pilot Area; however, initial SVE well SVE-2A appeared dry during installation and LNAPL was observed approximately 30-minutes after installation. A second SVE well, SVE-2B was installed approximately 2 feet south of SVE-2A to a shallower depth to avoid fluid collection.

The SVE wells were constructed with 3-inch diameter Schedule 40 polyvinyl chloride (PVC) well screens and riser pipe terminated just below the ground surface and protected with a flush-mount steel well vault concreted in-place (see Appendix A for well construction diagrams). The annular space surrounding the SVE wells screens were backfilled with silica sand pack to one-half foot above the top of the well screen. A minimum one-half foot hydrated bentonite chip seal was placed within the annular space above the top of the sand pack. The remaining annular space surrounding the well riser was backfilled with a cement seal to approximately one-foot below the surface. The grout was installed from the top of the bentonite seal upwards using a tremie pipe. The upper one foot was backfilled with cement and the well vault.

2.2.3 MONITORING WELL INSTALLATION

Three shallow groundwater monitoring wells (MW-102, MW-103, and MW-104) were installed at the approximate locations shown on Figure 2. Each monitoring well was geologically logged and constructed of 2-inch diameter schedule 40 PVC with 0.020-inch slot PVC screens. A protective flush-mount well compartment was concreted in place at each location. Monitoring wells were installed at various distances (between 5 and 10 feet) radially from each AS/SVE well cluster in the both MW-64 Native Material and the MW-22 PRT Pilot Test Areas. Monitoring wells were constructed of a 10-foot screen installed across the water table.

The monitoring wells were developed until water was relatively clear of sediment by using a peristaltic pump. Development fluids were containerized and disposed in the CMR facility WWTP as directed by CMR personnel.

2.2.4 GEOTECHNICAL ANALYSES

Three soil samples were collected using a Shelby tube from each pilot test area (MW-22 PRT Pilot Test Area, MW-64 Native Material Pilot Test Area, and MW-41 Native Material Pilot Test Area) and analyzed by a geotechnical laboratory for porosity, soil bulk density, grain size, water content/percent saturation, and hydraulic conductivity. Samples were collected from just below the water table and within the saturated unconsolidated materials. Samples were submitted to Core Laboratories LP of Bakersfield, California. Geotechnical samples are discussed in Section 3.2.

2.2.5 SOIL SAMPLING

Two soil samples were collected from monitoring well MW-102 and MW-103 installed north of MW-64 (MW-64 Pilot Test Area: Native Material). Each sample was collected from just above the water table and was analyzed for microbial population (colony forming units [CFUs]) and nutrients (nitrogen and phosphorus). Nutrient soil samples were submitted for laboratory analysis to Shealy Environmental Services, Inc. of West Columbus, South Carolina. Microbial population soil samples were submitted to Microbial Insights of Knoxville, Tennessee. Soil biodegradation chemistry and microbial analytical results are discussed in Section 3.3.

2.2.6 GROUNDWATER SAMPLING

Groundwater samples were collected from the monitoring well MW-103 and submitted for laboratory analysis for nutrients (nitrogen and phosphorous) and microbial population (CFUs). Nutrient groundwater samples were submitted for laboratory analysis to Shealy Environmental Services, Inc. of West Columbus, South Carolina. Microbial population groundwater samples were submitted to Microbial Insights of Knoxville, Tennessee. Biodegradation groundwater analytical results are discussed in Section 3.3.

2.2.7 SOIL GAS SAMPLING

Baseline soil gas sampling was initially planned to be completed to establish vadose zone soil gas conditions prior to conducting pilot test activities. Well locations screened across or above the water table were originally planned to be screened with a soil gas meter (RKI Eagle 2) for oxygen, carbon dioxide, and methane concentrations, and a PID for total volatile organic compound (VOC) concentrations. Soil gas sampling was not completed in both MW-64 Native Material and the MW-22 PRT Pilot Test Areas due to LNAPL observations. Soil gas sampling was not completed in the MW-41 Native Material Pilot Test Area due to ineffectiveness of the AS/SVE technologies (e.g., inability to extract or inject air).

3. PHYSICAL CHARACTERSTICS OF PILOT TEST AREA

3.1 SURFACE CONDITIONS

The AOC-16 area is located north of the Missouri River and grades from Smelter Avenue Northeast to the River. Surface elevation ranges from 3,350 feet above mean sea level (ft-amsl) at MW-64 to 3,340 ft-amsl at MW-41 along the northern North River Road ROW, to 3,311 ft-amsl at sand point well MW-43, located on the bank of the Missouri River. Surface cover primarily consists gravel with intermittent paved asphalt areas and roadways in the Truck Rack MW-64 Native Material and MW-22 PRT Pilot Test Areas to undulating vegetated and bare soil towards the MW-41 Native Material Pilot Test Area.

3.2 SUBSURFACE SOIL CHARACTERISTICS

The following subsection describes the geology and hydrogeology of the AOC-16 area.

3.2.1 GEOLOGY

The geologic characteristics in the AOC-16 area reflect the revised understanding of the subsurface Conceptual Site Model derived from the recent investigative activities in the Rail Area of the site. From the surface to a depth of 8 to 15 feet below ground surface (ft-bgs), unconsolidated Pleistocene deposits and fill materials described as sand or silty sand or gravel fill have been logged. Intermittent layers of clay up to 2 feet thick were observed in borings but are not consistent throughout the area and were not confirmed during pre-pilot test drilling activities. Occasional sandstone interbeds, either residually or perhaps recemented, were observed within this shallow horizon. These intermittent clay and cemented sand units influence the permeability of fluids through the geologic matrix. Observations of the tight geologic lithology were confirmed during pilot test activities and discussed in Section 5.

Only three borings were advanced to depths greater than 13 ft-bgs, two in the MW-64 Area and one in the MW-41 Area near River Road. The shallow horizon is directly underlain by a dry dusky red unit composed primarily of silts and clays. This unit was encountered at 15 ft-bgs in the boings advanced in the MW-64 Area and at approximately 11 ft-bgs in the boring near River Road. The PRT is installed from the surface to the top of the dusky red silt confining layer.

Observations of the tight geologic lithology were confirmed during pilot test activities and discussed in Section 5.

3.2.2 HYDROGEOLOGY

Groundwater flow in the perched unconsolidated materials above the dusky red silt confining layer is south towards the Missouri River. Average 2018 and 2019 fluid levels across the groundwater monitoring network for AOC-16 generally fluctuate between an average high, at up-gradient well RFI-8, of 3,351 ft-amsl to 3,327 ft-amsl, at downgradient

well MW-62, located on North River Road. The average high horizontal hydraulic gradient across AOC-16 is 0.07 feet per feet.

Previously calculated hydraulic conductivity testing was completed in the AOC-16 area in the early 2000's at monitoring well MW-25 (previously located southwest of AOC-16). The calculated hydraulic conductivity value was 0.15 feet per day (ft/day) (5 x 10^{-5} centimeters per second [cm/sec]) and a groundwater flow velocity was 0.06 ft/day (0.02 cm/day) at MW-25.

3.2.3 GEOTECHNICAL ANALYTICAL RESULTS

Geotechnical samples (CMR-AS2B-5.0-7.5-191018-ST [MW-22 PRT Pilot Test Area], CMR-AS3-6.0-7.0-191018-ST [MW-41 Native Material Pilot Test Area], and CMR-SB102-9.0-10-191018-ST [MW-64 Native Material Pilot Test Area]) were collected on October 19, 2019 at the approximate water table elevation. Samples were analyzed for moisture content, dry bulk density, total porosity, total organic carbon, fractional organic carbon, effective permeability to water, and hydraulic conductivity. Sample results are provided in Table 2 and the geotechnical laboratory report is provided in Appendix B.

Based on the data presented in Table 2, the grain size descriptions of each sample are:

• MW-22 PRT Pilot Test Area:

Fine-Grained Sand

• MW-64 Native Material Pilot Test Area:

Very Fine-Grained Sand Silt

• MW-41 Native Material Pilot Test Area:

These geotechnical results are verified through boring log diagrams in Appendix A at the appropriate depth.

3.3 **BIOGEGRADATION CHEMISTRY**

Petroleum-related compounds and LNAPL in soil and groundwater in AOC-16 and downgradient of AOC-16 have been documented in historic release records, previous Site investigations, and ongoing quarterly monitoring events. Pilot testing soil boring, sampling point installation, and pilot testing activities collectively documented a more wide-spread presence of LANPL across portions of the Truck Dock area including the PRT than was previously understood. While the LNAPL layer present is less than 1 foot thick, its presence presented an obstacle to some of the planned pilot testing activities and poses a challenge to the planned biosparging remedial approach for the main Truck Dock area (see Figure 4).

Benzene is the primary chemical of concern and benzene-impacted groundwater is present in AOC-16 at concentrations greater than the MDEQ 7 Human Health Standards – Groundwater Risk-Based Screening Levels of 5 micrograms per liter (μ g/L) or parts per billion (ppb).

Pilot test microbial and nutrient soil and groundwater samples were collected from monitoring wells MW-102 and MW-103 in the MW-64 Native Material Pilot Test Area: Native Material to evaluate biosparging effectiveness. However, due to the presence of LNAPL in

MW-102, planned pilot test groundwater sampling activities were not conducted at MW-102. Groundwater was sampled in MW-103. The pilot test sample results are presented in Table 3 and discussed below. Soil and groundwater analytical laboratory reports are provided in Appendix C.

On October 19, 2019, hydrocarbon-degrading bacteria (HDB) populations (microbial samples) were analyzed in soil at the groundwater interface approximately 9 to 10 ft-bgs from both MW-102 and MW-103 at concentrations of 505 CFUs per gram (CFU/g) and 305 CFU/g, respectively. Used as a qualitative indicator of in-situ microbial growth, HDB populations should exceed on the order of 1,000 CFU/g in soil samples within the treatment zone as biological treatment progresses (USEPA, 2017). If the HDB plate counts are low, additional oxygen, other electron acceptors, nutrients, and possibly active cultures can be applied to a treatment area. As groundwater remediation approaches completion, the HDB plate counts will ultimately decrease. Soil concentrations indicate that the application of a biologic remedy for soil immediately above the water table would require the addition of active cultures, nutrients, or oxygen to increase HDB populations.

On October 22, 2019, one HDB population sample (microbial sample) was collected in groundwater from MW-103 at a concentration of 255,000 CFUs per milliliter (CFU/mL). Like soil, HDB populations should exceed on the order of 1,000 CFU/mL in groundwater samples within the treatment zone as biological treatment progresses (USEPA, 2017). If the HDB plate counts are low, additional oxygen, other electron acceptors, nutrients, and possibly active cultures can be applied to a treatment area. As groundwater remediation approaches completion, the HDB plate counts will ultimately decrease. The HDB concentrations in MW-103 groundwater sample indicate that the application of a biosparging remedy for groundwater within this portion of the site likely would not warrant addition of active cultures and could be a potential remedy after elimination or reduction of LNAPL at the site below the water table.

Nutrients (soluble nitrate/nitrate in soil, nitrate/nitrite in water, and phosphorous) in soil and groundwater simulate biologic growth. Soil samples were collected on October 19, 2019 at the groundwater interface approximately 9 to 10 ft-bgs from both MW-102 and MW-103 for nutrients. Soluble nitrate/nitrate concentrations in soil were 1.3 milligrams per kilogram (mg/kg) in MW-102 and 2.4 mg/kg in MW-103. Phosphorous concentrations in soil were 450 mg/kg in MW-102 and 410 mg/kg in MW-103. Nutrient concentrations in groundwater were collected from MW-103. Nitrate/nitrate was not detected in MW-103. Phosphorous was detected at a concentration of 0.15 milligrams per liter.

Ideal nutrient concentrations are based on stoichiometry ratios of 100:10:1 to 100:1:0.5 of carbon, nitrate/nitrite, phosphorus (USEPA, 2017). Based on the nutrient results the ratios are 6923:1:346 in soil at MW-102 and 3750:1:171 in soil at MW-103 nitrogen would need to be added to the soil. Nutrient concentrations within the AOC-16 MW-64 Pilot Test Area: Native Material indicate that conditions are not conducive for biosparging given the quantities of microbial and nutrient concentrations in soil. Groundwater microbial results; however, indicate that conditions are favorable for biosparging in the native material outside of LNAPL impacted areas. Due to the presence of LNAPL and unfavorable soil conditions for

microbial and nutrient concentrations, biosparging effectiveness within the AOC-16 MW-64 Native Material and MW-22 PRT Pilot Test Areas may be limited.

4. PILOT TEST SETUP AND PROCEDURES

The following sections describe the equipment used and testing procedures for the pilot.

4.1 EQUIPMENT

The following sections describe the piping network for both the sparging and vapor extraction, sparging compressor, SVE blower, and associated equipment during pilot test activities.

4.1.1 PIPING

Primary piping for the both sparging and vapor extraction were composed of vacuum-rated fluorinated ethylene propylene (FEP)-lined flex hose with Cam-Lock[™] fittings at 1-inch and 2-inch diameters, respectively. Air sparging and biosparging piping connected at the wellhead and ran to a Cam-Lock[™] fitting at the trailer. SVE piping connected to a 2-inch diameter Schedule 40 galvanized steel pipe, approximately 6-feet in length, mounted to a board directly to the wellhead equipped with a Cam-Lock[™] fitting and connected to the FEP flex hose and to the trailer. The galvanized pipe (also referred to as the "instrumentation apparatus") was fitted with ports for measuring the air temperature from the SVE well, a flow valve to regulate the air flow at the SVE well, and sampling ports to measure vacuum and potentially collect vapor concentration measurement (e.g., PID or Summa canister).

4.1.2 PILOT TEST TRAILER AND EQUIPMENT

The biosparging and AS/SVE equipment (portable pilot test unit) was staged in the vicinity of each pilot test location. The trailer-mounted equipment was supplied by a remediation equipment vendor, Fliteway Technologies, Inc. (Fliteway). The pilot test equipment, process air piping systems, and electrical power supply to operate the pilot test equipment is described in this section. A process and instrumentation diagram (P&ID) for the portable pilot test unit is included as Appendix D.

Electricity for the pilot test equipment was provided by a portable 63-kilowatt (kW) diesel powered generator located adjacent to the mobile pilot test trailer. The portable electric generator for the SVE blower equipment was rated for 208/480 VAC 50 amps, 3-phase power with ground.

The pilot test equipment was trailer-mounted, and the necessary controls and instrumentation were designed for Class I Division II locations. The major system components include the following:

- Equipment Supplier: Fliteway Technologies, Inc.
- Equipment Type: Mobile AS/SVE Pilot Test Unit.
- Enclosed Trailer: Interstate I712TA2 7'6" wide by 12'5" Long by 6'4" Tall with 3,500pound Dual Axle.

- SVE blower type and model: Rietschle C-VLR 301 Rotary Claw Vacuum Blower, or equivalent.
- Maximum SVE Air Flow Capacity: 180 ACFM (66 SCFM) at 20" HG (Blower rated for up to 24 in-HG).
- Motor Horsepower (HP): 7.5 HP with VFD controller.
- Inlet Connections: 3 inches with Camlock fitting.
- Outlet Connection: 4-inch diameter line with Camlock fitting.
- Vapor Liquid Separator Storage Capacity: 117 gallons.
- Condensate Removal Capacity: Up to 15 GPM.
- AS compressor type and model: Mattei ERC511L Air-Cooled Rotary Vane Air Compressor.
- Maximum AS Air Flow Capacity: 67 CFM at 125 pounds per square-inch gauge (PSIG).
- AS Compressor Motor Horsepower: 15 HP.
- AS Compressor Pressure Tank capacity: 60 Gallons.
- Full Load Electrical Amps @ 480-240/3/60: 12-24A.
- Main Electrical Panel Circuit Breaker Requirement: 60 amp.
- Main Control Panel: NEMA 4 Control Panel (230/460 VAC Three Phase) mounted inside trailer.
- Electrical Rating: Class 1, Division 2.
- Low Pressure Drop $\frac{1}{2}$ HP Heat Exchanger to reduce the SVE discharge to within 20 degrees of ambient.

4.1.3 OFF-GAS TREATMENT

Off-gas treatment was not necessary based on discussions and approval from Montana Department of Environmental Quality. The approval letter is included as Appendix E.

4.2 PILOT TEST METHODS, PROCEDURES, AND MEASUREMENTS

The pilot test methods, procedures, and measurements discussed below were completed in the MW-64, MW-22, and MW-41 pilot test locations. An AS/SVE pilot test was conducted at each pilot test location. A biosparging pilot test was attempted at the MW-64 Native Material Pilot Test Area; however, due to the poor performance of AS testing and the presence of LNAPL, biosparging testing was not completed.

4.2.1 AIR APARGING - STEP RATE TEST

The AS step-rate test was developed to provide the data necessary to assess the feasibility of air sparging in the formation and to determine the design parameters for a full-scale system. Each AS step-rate test was completed by applying incremental pressure levels (or steps) to an injection point (AS or biosparging well). The stabilized injection flow rate and

surrounding dissolved oxygen concentrations were measured at each injection pressure level. The results of the AS stepped-rate test were used to select the optimum injection pressure and flow rate for the constant-rate test. The stepped-rate test was conducted at the pilot test areas in a minimum of three steps over approximately one-hour per test. Due to geologic constraints and limited water column available, all air sparging/biosparging steprate tests completed in the pilot test areas were not successful. Discussion of the AS and biosparging step-rate results is discussed in Section 5.

4.2.2 AIR SPARGING - CONSTANT RATE TEST

The AS step rate testing procedures used in the pilot testing areas indicated that sparging (both air sparging and biosparging), including constant-rate or long-term sparging tests would not be successful. Constant-rate air sparging and biosparging test were not performed in the pilot test areas.

4.2.3 SVE – STEP-RATE TEST

A SVE step-rate test determines the achievable range of soil vapor extraction rates by applying incremental vacuum levels to an extraction point. The stabilized vapor flow rate and surrounding subsurface vacuum levels are measured at each corresponding applied vacuum level (or steps). The results of the step-rate test are used to select the optimum vacuum level and flow rate for the SVE constant-rate test. SVE step-rate tests were attempted at all pilot test areas. Each test consisted of approximately 5 steps over approximately 1 hour per test.

4.2.4 SVE - CONSTANT RATE TEST

Achievable vapor extraction ROI is determined with a constant-rate test, where the optimum vacuum levels (as determined during the SVE step-rate test) is applied to the extraction point for an extended period. The effective ROI is defined as the area surrounding a vapor extraction point in which vapor flow is effectively achieved. For this test, Ramboll defined the effective ROI as the subsurface area where vacuum was measured at greater than one percent of the applied test vacuum. Constant-rate tests were not completed in the MW-22 PRT Pilot Test Area or the MW-41 Native Material Pilot Test Area due poor subsurface conditions (unexpected quantities of LNAPL or no observable flow during step-rate testing). Data collected from and derived from the constant-rate test can be used for selection of extraction equipment, selection of vapor discharge treatment equipment, and determination of effective ROI. The constant-rate test in the MW-64 Native Material Pilot Test Area was conducted for approximately 2.5 hours.

4.2.5 AIR DISCHARGE MONITORING

Total VOCs from the SVE-constant rate test in the MW-64 Native Material Pilot Test Area were monitored to evaluate air discharge concentrations and emission rates. The air discharge from the off-gas treatment unit was monitored during the constant-rate test and analyzed for total VOCs in the field using a PID equipped with a 10.6 electron-volt (eV) lamp. PID measurements were documented in the bound field notebook.

Air analytical samples were collected at the SVE blower discharge (effluent) during the constant rate pilot test while operating at the maximum air flow extraction rate. To determine the VOC emission rate, two air samples were collected using 1-liter Summa canisters with 10-minute regulators and submitted for laboratory analysis of VOC using United States Environmental Protection Agency (USEPA) Test Method TO-15. Sample SVE-1 20191024 was collected at the conclusion of the SVE constantrate test within the native material in the MW-64 area. Sample SVE-2B 20191023 was collected at the conclusion of the SVE step-rate test within the PRT in the MW-22 area. Soil vapor laboratory analytical report from the pilot test is included in Appendix F.

4.3 QUALITY ASSURANCE/QUALITY CONTROL METHODS

The following quality assurance/quality control (QA/QC) methods were implemented during the pilot testing activities:

- Sampling procedures to minimize potential from cross-contamination of vapor samples were followed.
- All site activities were recorded in a bound field notebook or on field data sheets specific to the pilot testing.
- Stringent chain of custody procedures was followed in accordance with Ramboll's standard operating procedures.
- All monitoring equipment was calibrated at the beginning of each work day. Daily calibrations were performed in accordance with the manufacturer's recommendations and recorded in the field notebook.

Air Samples Submitted for Laboratory Analysis

The following requirements and laboratory analysis methods for air samples collected during the pilot test were as follows:

- Summa canisters used were evacuated, laboratory-cleaned 1-liter stainless steel canisters equipped with the designated air flow controller/regulator.
- Air samples were submitted to Pace Analytical Services (Minneapolis, Minnesota) for laboratory analysis of VOCs using USEPA Method TO-15.
- Field and equipment blanks were not required because disposable sampling equipment was used for each sample.

Field Documentation

All site activities were documented in a bound field notebook, and the following activities are included in daily documentation:

- Chronological log of site activities.
- Personnel working on the site.
- Procedures for sampling and other routine activities associated with the pilot testing activities.

5. AS/SVE PILOT TEST DATA ANALYSIS AND RESULTS

The evaluation of the AS/SVE test data, including detailed equipment operation data and vacuum extraction performance monitoring data collected during the test, is summarized in this section and presented in Figures 5 through 8 and Tables 4 through 12. The evaluation includes graphical analysis of vacuum-flow response, graphical estimates of effective ROI, and an estimation of VOC vapor mass removal rates. Table 11 summarizes the laboratory analytical results of vapor samples collected during the SVE step-rate test in the MW-22 PRT Pilot Test Area and SVE constant-rate test in the MW-64 Native Material Pilot Test Area.

Both biosparging/AS and SVE test equipment and instrumentation operated normally and within anticipated operating conditions during the tests. The biosparging/AS and SVE test equipment could not be operated simultaneously due to an intermittent electrical fault which would shut down the SVE portion of the equipment. This issue did not prohibit testing activities because the biosparging/AS was not achievable due to an insufficient water column. Therefore, simultaneous operation was not required.

For organizational and readability, each pilot test in each area has been separated into subsections based on the location of the pilot test. The subsections are as follows:

- MW-64 Native Material Pilot Test Area
- MW-22 PRT Pilot Test Area
- MW-41 Native Material Pilot Test Area

5.1 TRUCK RACK PILOT TEST AREA

The Truck Rack pilot test area is shown in Figure 1 and located immediately south of AOC-16 on CMR property. The Truck Rack pilot test area was further separated into two subareas: the MW-64 Native Material area and MW-22 PRT area. Biosparging testing was the primary focus in the native material within the Truck Rack pilot test area; however, AS/SVE pilot test was also completed to evaluate if geologic conditions were favorable. Additionally, AS/SVE was completed in the PRT to evaluate how the trench materials responded to sparing and vapor excavation.

5.1.1 MW-64 NATIVE MATERIAL PILOT TEST AREA

The native material pilot test area is in the immediate vicinity of MW-64 (Figure 2). Two monitoring wells (MW-102 and MW-103), one SVE well (SVE-1), and one sparging well (AS-1) were installed to facilitate the pilot test. Each portion of the pilot test is discussed in the following sections.

Biosparging and AS Testing – MW-64 Native Material Pilot Test Area

Due to the similarities between biosparging and AS testing, both were evaluated in the MW-64 Pilot Test Area within the native materials. The biosparging and AS test data is presented Table 4 and summarizes the equipment operational measurements (applied pressures and flow) collected during the biosparging/AS step-rate test. Perimeter monitoring measurements were collected during each step using a digital manometer or Magnehelic[®] gauge.

Applied flow rates were stepped at a rate of 5 standard cubic feet per minute (SCFM) starting at 5 SCFM and concluding at 15 SCFM (Table 4). Applied pressures at the AS wells in all three steps were reasonably consistent at 4, 5, and 4 pounds per square inch (PSI). Perimeter monitoring observations at nearby monitoring wells (Table 4) indicated increasing pressure values as applied pressure was increased. During typical biosparging/AS step-rate testing applied pressure will increase until water is pushed out from the well; however, this was not observed. It is hypothesized that due to unfavorable subsurface conditions applied pressure to AS-1 was moving through the shallow, more permeable geologic material when the water was purged from the well. This indicates an insufficient volume of water for biosparging and air sparging technologies to be effective.

SVE Testing - MW-64 Native Material Pilot Test Area

SVE testing in the MW-64 pilot test area within the native material was completed through a step-rate test and constant-rate test. The test data are presented in Tables 5 and 6. Table 5 summarizes the equipment operational measurements (mechanical operation and flow) collected during the step-rate test. Table 6 summarizes the performance data (applied vacuum, perimeter vacuum monitoring) collected during the constant-rate test. Perimeter vacuum monitoring measurements were collected using a digital manometer or Magnehelic[®] gauge. During the constant-rate test perimeter vacuum monitoring in MW-102 and MW-103 was collected using a pressure transducer equipped with a data logger. The results of the tests are discussed below.

SVE Step-Rate Test - Mw-64 Native Material Pilot Test Area

The area-specific response of vapor flow rate to applied vacuum at SVE-1 is shown on Figure 5 using the data generated from the step-rate test (Table 5). The step-rate test was completed in seven steps ranging from 2.5 to 17.5 inches of mercury (in-Hg) at SVE-1. The final three steps produced the largest observed vapor flow rate of approximately 6.9 SCFM. To eliminate activation of the vacuum-relief valve, the applied vacuum of 15 in-Hg was selected for the constant-rate test.

SVE Constant-Rate Test – Mw-64 Native Material Pilot Test Area

Figure 6 depicts the vacuum influence measured in the observation points during the constant-rate test and provides an estimate of effective ROI in the unsaturated soils surrounding SVE-1 in the native material. These measurements are summarized in Table 6. The initial chart in Figure 6 plots perimeter vacuum measurements versus distance from SVE-1 on a normal scale. The bottom chart in Figure 6 plots perimeter vacuum measurements versus distance from SVE-1 on a logarithmic scale to provide a straight-line analysis of the data. Using the linear trend line of the logarithmic chart and setting the horizontal intersection to zero, the estimated effective vacuum ROI is approximately 24 feet. Based on the geology present at SVE-1, this ROI is consistent with dense, fine sands.

5.1.2 MW-22 PRT PILOT TEST AREA

The MW-22 PRT pilot test area is located approximately 100 feet southwest of MW-64 (Figure 2). Two functional monitoring wells (SVE-2A and MW-104), one SVE well (SVE-2B), and two sparging wells (AS-2A and AS-2B) were installed to facilitate pilot testing within the engineered backfill of the PRT. Each portion of the pilot test is discussed in the following sections.

AS Testing – MW-22 PRT Pilot Test Area

AS was evaluated in the MW-22 Pilot Test Area within the PRT to evaluate the effectiveness of sparging within the PRT materials. The AS test data is presented Table 7 and summarizes the equipment operational measurements (applied pressures and flow) collected during the AS step-rate test within the PRT. Perimeter monitoring measurements were collected during each step using a digital manometer or Magnehelic® gauge.

Applied flow rates were stepped at a rate of 5 SCFM starting at 5 SCFM and concluding at 20 SCFM (Table 7). Applied pressures at all steps were reasonably consistent at between 5 and 9 PSI. Perimeter monitoring observations at nearby monitoring wells (Table 7) indicated increasing pressure values as applied pressures were increased. During typical biosparging/AS step-rate testing applied pressure will increase until water is pushed out of the well; however, this was not observed. Like the AS step-rate test completed at AS-1 in the native material near MW-64, the applied pressure to AS-2B was moving through the shallow, more permeable geologic material in the trench when the water was purged from the well. This indicates an insufficient water column for air sparging technologies within the PRT.

SVE Step-Rate Testing – MW-22 PRT Pilot Test Area

SVE testing in the MW-22 pilot test area within the PRT was completed through a step-rate test. The test data are presented in Table 8 and summarizes the equipment operational measurements (mechanical operation and flow) collected during the step-rate test.

The area-specific response of vapor flow rate to applied vacuum at SVE-2B is shown on Figure 7 using the data generated from the step-rate test (Table 8). The step-rate test was completed in five steps ranging from 2.5 to 15 inches of mercury (in-Hg) at SVE-2B. The final two steps produced the largest observed vapor flow rate of approximately 24 SCFM; however, this flow induced a vacuum capable of capturing and generating fluid (e.g., groundwater and LNAPL) within the PRT. Approximately 20 gallons of fluid was collected during the SVE step-rate test at SVE-2B during one-hour of operation. Approximately 15 gallons of the 20 gallons was LNAPL. All fluids were containerized and disposed in the CMR WWTP.

Due to fluid generation and unforeseen presence of LNAPL, a constant-rate test was not completed in the MW-22 PRT Pilot Test Area.

5.2 RIVER ROAD PILOT TEST AREA

The MW-41 Native Material Pilot Test Area is located immediately north of North River Road (Figure 3). Three existing monitoring wells (MW-41, MW-51, and MW-58) were used as perimeter monitoring wells. One SVE well (SVE-3), and one AS well (AS-3) were installed to facilitate the pilot test. Two of the perimeter monitoring wells (MW-41 and MW-58) were used as wells because they met the conditions of an air sparge well (e.g., submerged well screen) and because AS-3 had an inadequate water column (e.g., exposed well screen). It is important to note that AS-3 was installed 5 feet from MW-41 and MW-58 to a depth of 10 ft-bgs and groundwater was not observed. While MW-41 and 58 each had groundwater present to approximately 3 ft-bgs and 7 ft-bgs, respectively. The difference in groundwater conditions likely exist due to surface infiltration within the more permeable soils in the upper few feet of soil. Each portion of the pilot test in the MW-41 area is discussed in the following sections.

5.2.1 AS TESTING - MW-41 NATIVE MATERIAL PILOT TEST AREA

AS was evaluated in the MW-41 Native Material Pilot Test Area to evaluate the effectiveness of sparging along North River Road. The AS test data is presented in Table 9 and summarizes the equipment operational measurements (applied pressures and flow) collected during the AS step-rate tests completed at AS-3, MW-41, and MW-58. Perimeter monitoring measurements were collected during each step using a digital manometer or Magnehelic® gauge.

Unlike the AS step-rate tests in the Truck Rack MW-64 and MW-22 areas, the applied steps for tests at AS-3 and MW-58 were administered based on pressure. Even though AS-3 did not accumulate groundwater, AS technology was attempted to evaluate if injection of air was possible. The steps at three locations were completed at varying pressures (Table 9). During pressure application, no flow was observed during the AS step-rate tests at AS-3 or MW-58 and the pressures did not fluctuate. It was confirmed through geotechnical analysis that geologic materials at this location are not conducive to accepting the injection of air (Table 2).

Applied flow rates at MW-41 during the AS step-rate test were stepped at a rate of 5 standard cubic feet per minute (SCFM) starting at 10 SCFM and concluding at 20 SCFM (Table 9). Pressures at the initial step was 3 PSI at 10 SCFM. The final two steps were reasonably consistent at 8 and 9 PSI. During typical biosparging/AS step-rate testing applied pressure will increase until water is purged from the well; however, this was not observed. Like the AS step-rate test completed at AS-1 and AS-2B, the applied pressure to MW-41 was moving through the shallow, more permeable geologic material in the trench when the water was purged from the well and exposed the shallow screen. This indicates MW-41 is not constructed appropriately for air sparge application.

Based on the AS step-rate tests completed at the three locations in the MW-41 area, air sparging in the MW-41 Native Material Pilot Test Area was not effective.

5.2.2 SVE STEP-RATE TESTING - MW-41 NATIVE MATERIAL PILOT TEST AREA

SVE testing in the MW-41 Native Material Pilot Test Area was completed through a step-rate test. The test data are presented in Table 10 and summarizes the equipment operational measurements (vacuum vs. flow) collected during the step-rate test. Perimeter vacuum monitoring measurements were collected during every step using a digital manometer or Magnehelic® gauge. The results of the tests are discussed below.

The area-specific response of vapor flow rate to applied vacuum at SVE-3 is shown on Figure 8 using the data generated from the step-rate test (Table 10). The step-rate test was completed in five steps ranging from 2.5 to 20 inches of mercury (in-Hg) at SVE-3. No observable flow was observed until the final two steps (17.5 and 20 in-Hg). Based on the step-rate tests observations it was concluded that similarly to air injection, native materials in the MW-41 pilot test area are not conducive vapor extraction technologies.

5.3 RIVER ROAD PILOT TEST AREA

5.3.1 MW-64 NATIVE MATERIAL PILOT TEST AREA

During the SVE-1 constant-rate test (MW-64 Native Material Pilot Test Area), a vapor sample was collected at the conclusion of the test for laboratory analysis. A summary of the vapor sample analytical data is included in Table 11. Estimation of VOC vapor removal rate was completed using the vapor concentration in micrograms per cubic meter (μ g/m³), the flow rate collected at the approximate time of sample collection, and the length of operation during the constant-rate test.

The SVE-1 constant-rate test removed 0.04 pounds of VOCs over the 2.5-hour period. Assuming consistent VOC recovery, the start-up removal rate would be expected to be approximately 0.46 pounds per day in one SVE extraction point in the native materials. Table 12 identifies the baseline removal rates for all analyzed VOC compounds.

5.3.2 MW-64 PRT PILOT TEST AREA

During the SVE-2B step-rate test (MW-22 PRT Pilot Test Area), a vapor sample was collected at the conclusion of the test for laboratory analysis. A summary of the vapor sample analytical data is included in Table 11. Estimation of VOC vapor removal rate in the PRT was completed using the vapor concentration in micrograms per cubic meter (μ g/m³), the flow rate collected at the approximate time of sample collection, and the length of operation during the step-rate test.

The SVE-2B step-rate test removed an estimated 0.76 pounds of VOCs over the 1-hour period. Assuming consistent VOC recovery, the start-up removal rate would be expected to be approximately 16.9 pounds per day per SVE extraction point within the PRT. Table 12 identifies the baseline removal rates for all analyzed VOC compounds.

6. PILOT TEST CONCULSIONS

The biosparging and AS/SVE pilot tests completed in the MW-64, MW-22, and MW-41 areas indicate that biosparging, AS, and SVE within the native soils was not effective and application of these technologies as an interim measure to address the identified impacts at AOC-16 will likely be unsuccessful without modification to the native soil conditions. In the MW-64 area, hydrocarbon-degrading bacteria are present in groundwater indicating that subsurface conditions are favorable to support biodegradation of residual petroleum VOCs; however, an insufficient volume of water (or saturated aquifer thickness) is present to effectively oxygenate and distribute air within the saturated soils to effectively implement the biosparging technology. Furthermore, the presence of LNAPL discovered at both the MW-64 and MW-22 test locations at the Truck Rack area will result in long operational times to address the LNAPL mass.

In the MW-41 Native Material Pilot Test Area, AS/SVE pilot tests were not successful due to the presence of very dense fine-grained soils (fine-grain sands, silts, and clays). The presence of the fine-grained silts and clays resulted in the inability to extract air through the soil formation resulting in little or no influence from the SVE and AS tests. The low permeability soils coupled with a highly variable or perched groundwater table and minimal evidence of subsurface air flow from the pilot testing indicates that the AS/SVE technology in the native soil materials will not be effective in achieving the goal of the interim measure in the MW-41 area.

AS and SVE testing performed within the backfill materials (e.g., trenched or fill material) within the PRT located in the MW-22 area determined that SVE is amenable for the extraction of vapor and LNAPL. This is likely due to the increased permeability from the disturbed soils within the PRT. The higher permeability soils allowed for air flow to be effectively distributed throughout the trench resulting in collection and capture of VOC, free phase and residual NAPL present within the PRT. This was evident when approximately 15 gallons of LNAPL was collected during the SVE step-rate test at SVE-2B during one-hour of operation. Air sparging within the trench was not successful due to insufficient volume of water to effectively sparge within the saturated soils or water column.

Due to the presence of LNAPL within the PRT and increased permeability of the PRT materials as compared to corresponding native materials, the SVE VOC removal rate in the Truck Rack area achieved in PRT materials was approximately 37 times greater than that achieved in corresponding native materials.

The ability to effectively recover NAPL and VOC mass from the PRT using SVE indicates that this technology is applicable for the collection and recovery of LNAPL and residual freephase product with modified subsurface conditions (i.e., trench backfilled with a permeable material). Due to the limited amount of saturated thickness available for air sparging in both pilot test areas, including the PRT and the presence of low permeability soil at deeper depths with the subsurface, air sparging and biosparging will not be effective as an interim measure remedy for the AOC-16 area. Recommendations for implementing alternatives to the previously selected interim measure technologies (SVE/AS and biosparging) for the AOC-16 area are discussed in Section 7.

7. ALTERNATIVE IM REMEDIAL OPTIONS AND RECOMMENDATIONS

Information gathered from the pilot testing activities indicate that biosparging, AS, and SVE technologies as presented in the *AOC-16 Interim Measures Evaluation Report* (CMR, 2019) will not be effective for the AOC-16 area. Based on the AOC-16 subsurface conditions documented during the pilot testing, this section presents one new remedial option for the Truck Rack area² and two new remedial options for the River Road area; two new remedial alternatives; and the recommended alternative IM remedial approach.

7.1 TRUCK RACK AREA: DUAL PHASE EXTRACTION SYSTEM WITHIN EXISTING PRODUCT RECOVERY TRENCH REMEDIAL OPTION

SVE technology proved more effective than sparging technologies in the Truck Rack MW-22 and MW-64 Pilot Test Areas (PRT and Native Material). Subsurface vadose air flow rates within the PRT was greater than that of native materials and LNAPL was readily recovered during the MW-22 PRT SVE pilot testing. A viable remedial option for the Truck Rack area would be to utilize the existing PRT for dual-phase extraction (DPE) by removing the existing 20-year old belt-skimmers with fluid extraction wells and DPE wells within the existing PRT.

DPE fluid extraction piping would remove groundwater, LNAPL, and soil vapor creating a fluid gradient toward each extraction location while simultaneously collecting LNAPL, dissolved phase impacts, and impacted soil vapor. Eleven recovery locations along the PRT would be added to capture a larger area of PVOC impacted groundwater and LNAPL. Maximum fluid recovery rates at each of the extraction locations is estimated to be approximately 2 to 3 gallons per minute (totaling 33 gallons per minute maximum). Fluid transfer piping and trenching would be required for the additional recovery locations. Examination of the current electrical connections at the two existing recovery locations would be required. Recovered groundwater and LNAPL would be directed to the CMR WWTP via existing WWTP transfer piping installed for previous PRT operation (if present and in sound condition). If previously installed transfer piping is not present or incapable of handling 33 gpm, transfer piping header utilized for the truck loading rack.

Due to high vapor concentrations observed during MW-64 and MW-22 pilot tests, the DPE system will require treatment prior to discharging to the atmosphere. As evaluated in the *AOC-16 Interim Measure Evaluation Report*, the air treatment technologies considered are

² Although the extent and thickness of LNAPL was greater than previously appreciated, renewed operation of the mid-90's Truck Rack LNAPL recovery system is not deemed a viable remedial option because:

- The amount of readily recoverable LNAPL by the belt skimmer system had reportedly reached diminishing levels when the system was shut down more than 15 years ago,
- It is anticipated that most if not all the belt skimmer recovery system equipment would require replacement before it could become operational again,
- Such a system may require replacement by a total fluids treatment system soon.

vapor-phase granular activated carbon (VGAC), thermal treatment using a regenerative thermal oxidizer (RTO) or catalytic oxidation (CatOx). Vapor concentrations observed during pilot testing activities indicate that an RTO or CatOx would be best suited for the Site. VGAC technology is best used for low concentrations.

Capital costs associated with a DPE system include design, Site preparation, well installation, system installation, and start-up. Costs associated with DPE within the existing PRT is discussed in Sections 7.4 and 7.5.

7.2 RIVER ROAD MW-41 AREA: AS/SVE SYSTEM WITHIN AN ENGINEERED TRENCH REMEDIAL OPTION

Based on observations during the MW-41 pilot test the application of AS/SVE would only be possible in a trench backfilled with permeable materials (e.g., loose gravel or coarse sand). The trench would be installed parallel to North River Road. The dimensions of the engineered AS/SVE trench would be 100 feet in length (MW-58 to MW-50), 10 feet in thickness (one ft-bgs to 11 ft-bgs based on the boring log of AS-3), and 5 feet in width. To eliminate surficial influences, one foot of clay will be placed from the ground surface to one ft-bgs. The AS/SVE design would be simplified due to the trench application. AS/SVE technology requires operation, monitoring, and maintenance (OM&M) and the frequency of OM&M would be contingent on system specifications and seasonal fluid levels. Depending on the available saturated thickness of the AS portion of the system, a combination of horizontal and/or vertical injection well placement may be required.

Capital costs associated with an AS/SVE engineered trench with AS/SVE system include design, Site preparation, trench installation, system installation, and start-up. Costs associated AS/SVE technology within an engineered trench are discussed in Section 7.4.

7.3 RIVER ROAD MW-41 AREA: PRODUCT RECOVERY AND PASSIVE TREATMENT TRENCH TECHNOLOGY WITH GRANULAR ACTIVATED CARBON AND OXYGEN AMENDMENTS REMEDIAL OPTION

An alternative to the AS/SVE trench in the MW-41 area would be the installation of a passive sorption technology (e.g., granular activated carbon [GAC] with an amendment to create favorable subsurface conditions for PVOC capture and degradation) within a trench application. Due to infrequent observable LNAPL in MW-41, three product recovery wells utilizing solar-powered pneumatic pumps are also proposed to prevent LNAPL from entering the trench which could greatly diminish the passive sorption technology. These two technologies would eliminate the need for infrastructure installation and OM&M requirements (e.g., electricity, vapor treatment), which are necessary for AS/SVE systems. The passive treatment technology trench would be like the AS/SVE trench described in Section 0 (100-feet in length, by 5-feet in width, by 11-feet in depth).

Capital costs associated with a passive treatment trench system include design, bench testing of amendments, Site preparation, and trench installation. Costs associated with passive treatment trench technology is discussed in Section 7.5.

7.4 REMEDIAL ALTERNATIVE 1 – DPE IN THE PRT WITH AS/SVE WITHIN AN ENGINEERED TRENCH

Remedial Alternative 1 includes the recovery and removal of mobile and residual LNAPL, impacted groundwater, and impacted soil vapor utilizing DPE technology installed in along the entire Truck Rack PRT and removal and recovery of hydrocarbon constituents from groundwater and saturated soils utilizing AS/SVE technology within an engineered trench immediately north of North River Road (MW-41 Area). Remedial Alternative 1 footprint is provided in Figure 9.

The benefits of utilizing these two technologies are:

- Recovery and removal of mobile and residual LNAPL, impacted groundwater, and soil vapor from the areas with elevated hydrocarbon constituents within an existing trench infrastructure downgradient of AOC-16.
- Receptor protection of Missouri River via recovery and removal of hydrocarbon constituents from groundwater and saturated soils immediately north of North River Road.

<u>Cost</u>

Capital cost associated with DPE technology and AS/SVE within an engineered trench technology include design , Site preparation, well installation, system installation, and startup. Total capital costs are estimated to be \$1,708,000. Annual OM&M costs for Alternative 1 remedies are estimated to be approximately \$159,000. A detailed breakdown of the costs associated with implementation of this alternative are provided in Appendix G.

7.5 REMEDIAL ALTERNATIVE 2 – DPE IN THE PRT WITH PRODUCT RECOVERY AND PASSIVE TREATMENT TRENCH

Remedial Alternative 2 includes the recovery and removal of mobile and residual LNAPL, impacted groundwater, and impacted soil vapor utilizing DPE technology installed in along the entire PRT and removal and recovery of hydrocarbon constituents from groundwater and saturated soils utilizing recovery wells and passive treatment technologies within a trench immediately north of North River Road (MW-41 Area). Remedial Alternative 2 footprint is provided in Figure 10.

The benefits of utilizing these two technologies are:

- Recovery and removal of mobile and residual LNAPL, impacted groundwater, and soil vapor from the areas with elevated hydrocarbon constituents within an existing trench infrastructure downgradient of AOC-16.
- Receptor protection of Missouri River via recovery and removal of hydrocarbon constituents and transformation of dissolved-phase LNAPL constituents from groundwater and saturated soils immediately north of North River Road.

<u>Cost</u>

Capital cost associated with DPE technology and product recovery and passive treatment trench technology include design, treatment amendment bench testing, Site preparation, well installation, system installation, and start-up. Total capital costs are estimated to be \$1,483,000. Annual OM&M costs for Alternative 2 remedies are estimated to be approximately \$120,000. A detailed breakdown of the costs associated with implementation of this alternative are provided in Appendix G.

7.6 **RECOMMENDATIONS**

Both Remedial Alternatives described in Section 7.4 and 7.5 are deemed viable alternative IM remedial approaches to address the petroleum related impacts associated with the AOC-16 area. As summarized in Table 13, Remedial Alternative 2 is deemed more economical than Remedial Alternative 1. Accordingly, Remedial Alternative 2 – DPE in the existing Truck Dock PRT with a product recovery and passive treatment trench along River Road – is recommended as the alternative IM remedial approach for the AOC-16 area.

A DPE system within the existing PRT is the recommended remedial option for the Truck Dock area to effectively address the NAPL and petroleum related constituents present within the vadose zone, variable saturated conditions of the perched materials, and presence of a more extensive LNAPL area than previously understood. The SVE pilot test of the MW-22 PRT demonstrated the effectiveness of the DPE approach in this portion of the site whereas the previously identified remedial approach of limited skimming with bio-sparging was determined to not be feasible due to the more widespread presence of LNAPL and the limited saturated thickness of perched materials.

A triplet of contingency product recovery wells immediately upgradient of a passive treatment trench is recommended to address petroleum impacted dissolved phase perched groundwater downgradient of the AOC-16 Truck Rack and upgradient of River Road and the Missouri River.8.

8. **REFERENCES**

- Calumet Montana Refinery. 2019. Area of Concern 16 Interim Measure Evaluation Report. Calumet Montana Refining, LLC, Great Falls, Montana. June.
- Calumet Montana Refinery. 2019. 3rd Quarter 2019 Groundwater Sampling Summary Report. Calumet Montana Refining, LLC, Great Falls, Montana. October.
- USACE. 2002. Engineering and Design, Soil Vapor Extraction and Bioventing. Engineer Manual. No. 1110-1-4001. June.
- USEPA. 2001. Development of Recommendations and Methods to Support Assessment of Soil Venting Performance and Closure. EPA/600/R-01/070. September.
- USEPA. 2017. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tanks Sites: A Guide for Corrective Action Plan Reviewers. EPA/510/B-17/003. October.

FIGURES

//mwmkefps2/Shared/Client Project Files/_1690010040_CMR Remedy Options/Calumet GIS/CRUMET/DOCS16 2019/Fig1_PilotStudArea.mxd

wwm/efps2/Shared/Client Project Files/_1690010040_CMR Remedy Options/Calumet GIS/CLMMT/DOCS/LDOCS/LDOCS/LDOCS/L

M:/Client Protect Files/ 1690010040 CMR Remedy Options/Calumet GIS/CALUMET/DOCS/AOC16 2019/Fig3 MW41area.mxd

Options/Calumet GIS/CALUMET/DOCS/AOC16 2019/

Project Files 1690010040 CMR Remedy

ed/Client

cefps2\Sha

- **Piezometers**
- ا Monitoring Wells
- • **Recovery Wells**

UVOST 100% RE Parcels

80

1 inch = 55 feet

160

Feet

0

Great Falls, Montana

Figure 5: SVE-1 Step-Rate Test Applied Vacuum-Flow Response CurveMW-64 Native Material Pilot Test Area
CMR
Great Falls, Montana

Figure 6 - SVE-1 Constant-Rate Test

Vacuum Radius of Influence

MW-64 Native Material Pilot Test Area

CMR

Great Falls, Montana

Figure 7 - SVE-2B Step-Rate Test Applied Vacuum-Flow Response Curve MW-22 PRT Pilot Test Area CMR Great Falls, Montana

Page 1 of 1

Ramboll US Corporation

Figure 8 - SVE-3 Step-Rate Test Applied Vacuum-Flow Response Curve MW-41 Pilot Test Area CMR Great Falls, Montana

						250.0
						200.0
						150.0
						-
						100.0
						50.0
						0
	2 5 6 5 7 7 7			0.20	0U	0.0

/mwmkefps2/Shared/Client Project Files/_1690010040_MCMR Remedy Options/Calumet GIS/CALUMET/DCAC/OFIC 2019/Fig8_Rem_ALT_L

//mwmkefps2/Shared/Client Project Files/_169001004/COMR Remedy Options/Calumet GIS/CALUMET/DOCS/AOC16 2019/Fig9_Rem_ALT_2.mxd

TABLES

Table 1 - AOC-16 Pilot Test Well Construction Details and Horizontal Distance From Test Well AOC-16

AOC-16 Calumet Montana Refining Great Falls, Montana

Pilot Test Area Description	Well	Well Diameter (inches)	Depth To Bottom of Screen (feet bgs)	Length of Screen (feet)	Distance from Test Point (feet)
MW-64: Native Material	SVE-1	с	9	2	1
MW-64: Native Material	MW-102	2	14	10	6
MW-64: Native Material	MW-103	2	14	10	16
MW-64: Native Material	AS-1	2	11	2	5
MW-64: Native Material	MW-64	4	14	10	10
MW-22: PRT	SVE-2B	٤	S	2	1
MW-22: PRT	MW-104	2	6	S	12
MW-22: PRT	AS-2A	2	6	2	4
MW-22: PRT	AS-2B	2	8.5	2	5
MW-22: PRT	SVE-2A	8	9	2	2
MW-22: PRT	MW-22	2	14	6	41
MW-41: Native Material	SVE-3	٤	9	2	1
MW-41: Native Material	AS-3	2	10	2	5
MW-41: Native Material	MW-41	2	28	24	10
MW-41: Native Material	MW-51	9	8	4	8
MW-41: Native Material	MW-58	4	16	5	5

Notes:

bgs = below ground surface MW = monitoring well

SVE = soil vapor extraction

AS = air sparging

PRT = Primary Recovery Trench

Table 2 - Geotechnical Analysis in AOC-16 Pilot Test AreasAOC-16Calumet Montana RefiningGreat Falls, Montana

			Hydraulic	Conductivity	(cm/s)	5.03E-06		1 N3E-N6	1.0JL-00	1011	VTUE-TU
		Effective Perme-	ability to	Water	(millidarcy)	4.863		1 0076	TIUUTU		
				foc	(6/6)	0.0107			00000		0.00.0
				TOC	(mg/kg)	10,700			2,000		///
			Total	Porosity	(%Vb)	34.4		21 1	J 1 . T	UC	DC
			Dry Bulk	Density	(g/cm ³)	1.74		1 83		1 0.5	1.00
			Moisture	Content	(% Wt)	18.1		16.2	C'0T	1 1 1	C'CT
				Clay	(%)	4.55		ע בב		70 67	10.02
					Silt (%)	13.90		20.05	CD.CZ	E0 67	10.00
			Very	Fine	(%)	13.59		CT 11	14.12		70.21
/				Fine	(%)	27.14		15 27	10.44	7 11	11.1
Summary	Sand Size			Medium	(%)	36.10		C7 VC	24.02	C U F	сл.т
Sieve	0,			Coarse	(%)	3.91		6 10	n t-0	c	>
			Very	Coarse	(%)	0.81		23 C	CC-7	Ū	D
				Gravel	(%)	0.0		a 0	0.0	C	5
				Grain Size	Description	Fine Grain	Sand	Very Fine	Grain Sand	+!:U	OIL
			Depth	Interval	(feet bgs)	5 - 7.5		0 - 10		2	/ - 0
				Boring	Location	AS-2B		د_24	0-0X		
				Pilot Test Area	Description	MW-22: PRT		MW-64: Native	Material	MW-41: Native	Material

Notes:

bgs = below ground surface % = percent Wt = weight

g/cm3 = gram per cubic centimeter Vb = bulk volume, cubic centimeter TOC = total organic carbon mg/kg = milligram per kilogram fOC = fractional organic carbon g/g = gram per gram cm/s = centimeters per second

Table 3 - Microbial and Nutrient Analytical Results in MW-64 Pilot Test Area: Native Material AOC-16

Calumet Montana Refining Great Falls, Montana

		Nutrient Ratio	6923:1:346	3750:1:171	
ent		Phosphorus	450 mg/kg	410 mg/kg	0.15 ma/L
Nutri		Nitrate/Nitrite	1.3 mg/kg ⁽²⁾	2.4 mg/kg ⁽²⁾	<0.020 ma/L
		TOC ⁽¹⁾	9,000 mg/kg	9,000 mg/kg	1
Microbial	BOH	Concentration	505 cfu/g	305 cfu/g	255.000 cfu/mL
Denth	Interval	(feet bgs)	10-12	10-12	!
		Media	Soil	Soil	Groundwater
	Boring/Well	Location	MW-102	MW-103	MW-103

Notes:

HDB concentrations greater than 1,000 cfu in soil and groundwater indicate optimal biosparging conditions.

Ideal nutrient ratios for biosparging are 100:10:1 to 100:1:0.5 (TOC:Nitrate/Nitrite:Phosphorus).

bgs = below ground surface

HDB = hydrocarbon-degrading bacteria

TOC = total organic carbon

cfu = colony forming units

g = gram

kg = kilogram

mg = milligram

mL = milliliter

 $^{(1)}$ TOC values from the soil analytical data collected at MW-102.

⁽²⁾ Nitrate/nitrite in soils is reported as soluable.

Table 4 - AS-1 Step-Rate TestPerformance Data

MW-64 Native Material Pilot Test Area

AOC-16

CMR

Great Falls, Montana

		Measured	Pressure
AS-1	AS-1	(in-F	120)
Flow Rate	Applied Pressure	MW-102	MW-103
(SCFM)	(PSI)	5 ft ⁽¹⁾	$11 \text{ ft}^{(1)}$
5	4		
10	5	7	5
15	4	>10	6

Notes:

SCFM - standard cubic feet per minute PSI - pound per square-inch

in-H2O - inches of water

ft - feet

⁽¹⁾ Distance from AS-1

Table 5 - SVE-1 Step-Rate Test Results MW-64 Native Matieral Pilot Test Area

Great Falls, Montana Performance Data CMR

		CVE-1	CVE 1			
		Observed	Observed	Temperature	Differential	Calculated
		Vacuum	Vacuum	(degrees	Pressure	Flow Rate
	Date and Time	(in-Hg)	$(in-H_2O)$	Fahrenheit)	(in-H ₂ O)	(SCFM)
Step 1	10/24/2019 10:30	2.5	34.0	50	0.010	5.4
Step 2	10/24/2019 10:31	5.0	68.0	50	0.012	5.6
Step 3	10/24/2019 10:33	7.5	102.1	50	0.015	6.0
Step 4	10/24/2019 10:35	10.0	136.1	50	0.020	6.5
Step 5	10/24/2019 10:37	13.5	183.7	50	0.027	6.9
Step 6	10/24/2019 10:38	15.0	204.1	50	0.027	6.5
Step 7	10/24/2019 10:40	17.5	238.2	50	0.036	6.9

SCFM = standard cubic feet per minute Notes in-H₂O = inches of water

Table 6 - SVE-1 Constant-Rate TestPerformance DataMW-64 Native Material Pilot Test AreaCMRGreat Falls, Montana

				Vacuum C	Observations (inches	; of H2O)		
	Distance							
	(Feet)	10/24/19 12:16	10/24/19 12:20	10/24/19 12:30	10/24/19 12:35	10/24/19 12:40	10/24/19 14:00	10/24/19 14:30
AS-1	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-64	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-102	6	1.86	2.99	3.58	3.90	3.87	2.90	3.00
MW-103	16	0.42	1.16	1.73	1.83	1.85	1.15	1.20

Notes: H2O = water

Table 7 - AS-2B Step-Rate TestPerformance Data

MW-22 PRT Pilot Test Area CMR Great Falls, Montana

AS-2B	AS-2B	Measured (in-H	l Pressure 120)
Flow Rate	Applied Pressure	MW-104	SVE-2B
(SCFM)	(PSI)	4 ft ⁽¹⁾	5 ft ⁽¹⁾
5	3		
10	5		
12.5	6		
15	8	9.1	
20	9	>10	2.9

Notes:

SCFM = standard cubic feet per minute PSI = pounds per square-inch in-H2O = inches of water ft - feet

⁽¹⁾ Distance from AS-2B

Table 8 - SVE-2B Step-Rate Test Results Performance Data MW-22 PRT Pilot Test Area CMR

Great Falls, Montana

	1		-	-	-	-	
Calculated Flow Rate (SCFM)	11.8	13.9	17.5	21.3	23.6	24.3	28.3
Differential Pressure (in-H ₂ O)	0.044	0.065	0.115	0.190	0.291	0.36	0.58
Temperature (degrees Fahrenheit)	45	45	45	45	45	45	45
SVE-2B Observed Vacuum (in-H ₂ O)	34.0	68.0	102.1	136.1	170.1	204.1	238.2
SVE-2B Observed Vacuum (in-Hg)	2.5	5.0	7.5	10.0	12.5	15	17.5
Date and Time	10/23/2019 13:35	10/23/2019 13:33	10/23/2019 13:40	10/23/2019 13:45	10/23/2019 13:50	10/23/2019 13:55	10/23/2019 14:00
	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7

Notes in-H₂O = inches of water

SCFM = standard cubic feet per minute

Table 9 - AS Step-Rate TestPerformance Data

MW-41 Pilot Test Area CMR Great Falls, Montana

	Flow Rate (SCFM)	Applied Pressure (PSI)
AS-3	0	13
	10	3
MW-41	15	8
	20	9
MW-58	0	13

Notes:

SCFM = standard cubic feet per minute PSI = pounds per square-inch

Table 10 - SVE-3 Step-Rate Test **Performance Data** MW-41 Pilot Test Area CMR

Montana
<u>s</u>
Fa
Great
Great Falls,

		SVE-3 Observed	SVE-3 Observed	Temperature	Differential	Calculated
	Date and Time	Vacuum (in-Hg)	Vacuum (in-H ₂ O)	(degrees Fahrenheit)	Pressure (in-H ₂ O)	Flow Rate (SCFM)
Step 1	10/22/2019 14:35	2.2	29.9	60	00.0	00.0
Step 2	10/22/2019 14:40	5.0	0'89	60	00'0	00.0
Step 3	10/22/2019 14:45	7.5	102.1	60	00'0	00.0
Step 4	10/22/2019 14:50	10.0	136.1	60	00'0	0.00
Step 5	10/22/2019 14:55	12.5	170.1	60	00'0	0.00
Step 6	10/22/2019 15:00	15	204.1	60	00'0	00.0
Step 7	10/22/2019 15:05	17.5	238.2	60	0.05	9.82
Step 8	10/22/2019 15:10	20	272.2	60	0.08	11.5

Notes in-H₂O = inches of water

SCFM = standard cubic feet per minute

Table 11 - Summary of VOC Vapor Analytical ResultsAOC-16 Pilot TestCMRGreat Falls, Montana

	Effluent Vanor		vapor Flow				Bromo-				- C		uchar)		
	Sample Date and		Rate				dichloro-		Bromo-	1,3-	2- Butanone	Carbon	Tetra-	Chloro-	Chloro-
	Time	Name	(SCFM)	Acetone	Benzene	Benzyl Chloride	methane	Bromoform	methane	Butadiene	(MEK)	Disulfide	chloride	benzene	ethane
CVE	6/28/2018 8:45	SVE-1 20191024	6.5	25,900 U	46,100	28,300 U	14,600 U	56,400 U	8,480 U	4,840 U	32,300 U	6,810 U	13,800 U	10,100 U	5,760 U
0 v L	6/28/2018 10:05	SVE-2B 20191023	24.3	27,000 U	481,000	29,500 U	15,200 U	58,900 U	8,850 U	5,050 U	33,600 U	7,100 U	14,400 U	10,500 U	6010.0 U
							Dibromo-	1,2- Dihromo-	1.2-		1 4-	Dichloro-	ו 		
					Chloro-		chloro-	ethane	 Dichloro	1,3-Dichloro-	-, - Dichloro-	difluoro-	Dichloro-	1,2-Dichloro-	1,1-Dichloro
				Chloroform	methane	Cyclo-hexane	methane	(EDB)	benzene	benzene	benzene	methane	ethane	ethane	ethene
SVE	6/28/2018 8:45	SVE-1 20191024	6.5	5,300 U	4,520 U	285,000	18,600 U	8,400 U	13,100 U	13,100 U	32,900 U	10,900 U	8,850 U	4,420 U	8,670 U
	6/28/2018 10:05	SVE-2B 20191023	24.3	5,560 U	4,710 U	2,920,000 E	19,400 U	8,760 U	13,700 U	13,700 U	34,300 U	11,300 U	9,230 U	4,610 U	9,230 U
				Cis-1 2-	Trans-1 2-		Cie-1 3-	Tranc-1 3-	Dichloro-						Havachloro-
				Dichloro-	Dichloro-	1 2-Dichloro-	Dichloro-	Dichloro-	Petrafluoro		Ethvl	Ethvl-	4-Ethvl-		1 3-
				ethene	ethene				ethane	Ethanol	Acetate	henzene	toluene	n-Hentane	L,J ⁻ hiitadiene
į	6/28/2018 8:45	SVE-1 20191024	6.5	8,670 U	8,670 U	10,100 U	9,920 U	9,920 U	15,300 U	20,600 U	7,880 U	9,490 U	26,900 U	18,000	58,300 U
SVE	6/28/2018 10:05	SVF-2B 20191023	74.3	9,040 11	9,040 11	10.500 U	10,300 U	10.300 U	15,900 U	21,500 U	8,220 U	9,900 11	28,000 U	195.000	46,600 11
	01 tol toto 10 to		1	0 0 0 0	0000	0 000/01	0 000/04	0 000/01	0 000/01	0 000/13	0/1100	0 00010	20,000 0	000/01-	0 000/01
													((, ,		
						Mothylono	4-Methyl-2- Dontanono	Mothyl_Tort	oled+daeN				1,1,2,2- Totrachlor	Totrachloro	Totrabidro
				anevah-n	2-Hevanone	Chlorida		MeulyI-Telt Butvl Ethar	משוווומוב	2-Pronanol	Pronvlana	Styrana	n eu acriiur n-athana	athana	furan furan
	31,00100/00/2	LC01010C 1 3/13	L V												
SVE	24:0 01 07 /07 /0 20:01 0107 /07 /0	2VE-1 20191024	C.0	434,000	44,700 0		44,700 0	11 000 11				9,010 0		1,410 U	
	CU:UI 81U2/82/0	2016102 02-30C	24.3	4,120,000 E	40,0UU U	39,0UU U	40,0UU U	4T,UUU U	29,8UU U	20,UUU U	3,420 U	A, / IU U	1,83U U	V V V V	0,/3U U
			-							-					ſ
							1,1,2-		Trichloro-	1,1,2- Trichloro-	1,2,4-	1,3,5-			
					1, 2, 4-Trichloro-	1,1,1-Trichloro-	Trichloro-	Trichloro-	fluoro-	trifluoro-	Trimethyl-	Trimethyl-	Vinyl		
				Toluene	benzene	ethane	ethane	ethene	methane	ethane	benzene	benzene	Acetate 1	Vinyl Chloride	m&p-Xylene
SVF	6/28/2018 8:45	SVE-1 20191024	6.5	10,900	81,100 U	11,900 U	5,990 U	5,870 U	12,300 U	16,800 U	10,700 U	10,700 U	7,700 U	2,800 U	19,000 U
)	6/28/2018 10:05	SVE-2B 20191023	24.3	23,400	84,500 U	12,400 U	6,200 U	6,120 U	12,800 U	17,500.0 U	11,200 U	11,200.0 U	8,030 U	2,920 U	19,800 U
			-												
				o-Yvlana	Total VOCe										
	6/28/2018 8·45	SVE-1 20191024	с 9 9		794 000										
SVE	6/28/2018 10:05	SVF-7R 20191023	2.0		7 739 400										
	CO.01 0102/02/0		2	0 00010	001/001/2										
Notes:	a toologidiin biichacto														
U = indi	icates the compound v	vas analyzed for, bu	it not det	ected.											
E = Ana	Ilyte concentration ext	ceeded the calibrativ	on range.												
	The result is estima	ited.													
POID	dicates the compound	Was detected.													

Table 12VOC Mass Removal Rates and QuantitiesAOC-16 Pilot TestsCMRCMRGreat Falls, Montana

Influent

	- 2
	1
÷.	- +
_	- 1
	Ō

	Sample Date and	Run Hours	Flow Rate				Ļ			
	Time	(Hours)	(SCFM)	Compound	Benzene	Cyclo-hexane	Heptane	n-Hexane	Toluene	Total VOCs
CVE-1				Vapor Concentration (µg/m ³)	46,100	285,000	18,000	434,000	10,900	794,000 µg/m ³
2010102	10/24/2019 14:25	2.17	6.5	Mass Loading (Ibs/day)	0.0269	0.1665	0.0105	0.2536	0.0064	0.4640 lbs/day
470TCT07				Mass Removed (Ibs)	0.0024	0.0150	0.0009	0.0229	0.0006	0.0419 lbs
SVE-7B				Vapor Concentration (µg/m ³)	481,000	2,920,000	195,000	4,120,000	23,400	7,739,400 µg/m ³
3010102	10/23/2019 14:20	1.08	24.3	Mass Loading (Ibs/day)	1.0516	6.3839	0.4263	9.0075	0.0512	16.9205 lbs/day
CZUIEIUZ				Mass Removed (Ibs)	0.0475	0.2882	0.0192	0.4066	0.0023	0.7638 lbs

Notes: SCFM = standard cubic feet per minute SVE = soil vapor extraction $\mu g/m^3$ = micrograms per cubic meter lbs = pounds VOC = volatile organic compound

Table 13 - AOC-16 Summary of Remedial Action Alternative Costs CMR Great Falls, Montana

	Alterna	ative 1	Alterna	itive 2
	MW-22 PRT Area	MW-41 Area	MW-22 PRT Area	MW-41 Area
		Air Sparge/Soil Vapor		Product Recovery and
	Dual Phase Extraction	Extraction within	Dual Phase Extraction	Passive Treatment Trench
		Engineered Trench		Technology
Engineering: Design and Planning	\$ 220,000	\$ 80,000	\$ 220,000	\$ 100,000
Capital Costs	\$ 1,209,000	\$ 499,000	\$ 1,209,000	\$ 274,000
Annual OM&M Costs	\$ 95,000	\$ 64,000	\$ 95,000	\$ 25,000
Present Value Cost Range (-30%/+50%)	\$1,517,000 t	o \$3,251,000	\$1,346,000 tc	o \$2,885,000

Notes: OM&M = operation, monitoring, and maintenance PRT = Primary Recovery Trench

APPENDIX A AOC-16 Pilot Test Boring Logs and Well Construction Diagrams

															LOCATION ID
Lit	holo	gy l	Jog						Sheet	1 of	<u>2</u>				MW-64
Proje	ect Na	me					Project Number						Site II)	
AO	C 16 C	Grour	ıdwat	er Investigation	n			477-0	18-002						Calumet Refinery, Great Falls, MT
Drilli	ing Co	mpan	Y			Driller			Ground	Elevatio	on				Total Drilled Depth
	Bo	land	Envir	onmental Drill	ing		D 11D		D / T						<u>14</u> feet-bgs
Drill	ing Eq	uipme	nt		Drilling N	Aethod	Borehole Diameter		Date/11	me Drill	ing Sta	irted			Date/Time Total Depth Reached
CM	E Tru	ck M	ounte	ed Rotary rig	Hollo	w Stem Auger	10"		Watan I	avial (ha	3-Ap	r-17			3-Apr-17
Type	01 S a	mpim	g Devi	ice					water 1	ever (bg	gs)				
C	1. 11.	Spl	it-Spc	oon					First		<u>7</u>	feet-bg	gs		Final
Sam	ле па	mmer				140 lbs			Geologi	sı					Checked by/Date
Туре	Safe	ety ha	mme	I nahada alsatah in 1	field look	Driving Weigh	t $Drop = 30"$				W. C	oles			
Loca	tion D	escrip	uon (1	nelude sketch in	neid logbo	JOK)									
						Description						Est	timate %	óof	Remarks
			s			Desemption					t	1.5		0.01	
pth	rval	very	Count	(Include litholog	gy, grain s	ize, sorting, ang	llarity, Munsell color name	[Cod		ology	Conte				
De	Inte	Recc	low 6	& notation, m	inerology,	bedding, plastic	ity, density, consistency,	VLST		Lithe	ater ((Include all sample types & depth, odor, organic
			Щ		6	etc., as applicable	e)	~			W	Gr	Sa	Fi	vapor measurements, etc.)
	E	_		Prown fin	o to or	oroo aroir	ad SAND and								
	F			Gravel de		o odor	ieu SAND anu								
	ŀ	-		Glavel, ua	amp, n	0 0001.									
	F														
	F	-													
	E														
2	F	L													
	F	-													
	E														
	╞	-													
3		L						1							
	F	_		Black, silt	v. clav	ey fine to a	coarse grained								
	F	-		SAND, m	oist, hy	/drocarbor	odor.								
4	L.														
	╞	-													
	E														
	╞	-													
5	F														
	F	_													
	F	-													
6		_						ļ							
	┝	╞													
	E	E		Gray, fine	to coa	arse graine	a SAND, wet,								
	┝	-		Istrong hyd	urocari	oon odor.									
7	F														
	F	F													
	F	F													
8	L	L													
	F	-													
	È	E													
	╞	F													
9	F	\vdash													
	F	F													
	ŀ	-													
10	F	Γ													

			-		C1	•	•				LOCATION ID MW-64
	thol	logy	Log	(continued)	Sheet	: 2 of	<u>2</u>	F			Demontra
Depth		Interval Recovery	Blow Counts	(Include lithology, grain size, sorting, angularity, Munsell color name & notation, minerology, bedding, plasticity, density, consistency, etc., as applicable)	ASTM Code	Lithology	Water Content	Gr	Sa	Fi	(Include all sample types & depth, odor, organic vapor measurements, etc.)
10 11 12 13				Same as above.							
14 15 16 17 18 19 20 21 21 22 23				TD @ 14' bgs Well installed @ 14' bgs							

	R A	A M	BO	5	LL	Ramboll 1560 Broadway Suite 1 Denver, CO 80202 Telephone: 303-382-54	905 482	WELL ID: SVE-1 NG NUMBER: SVE-1
CLIER	VT Calı	umet Mo	ontana I	Refir	nina. LLC		PROJECT NAME AOC-16 Pilot Study	
PROJ		MBER			<u>g, == 0</u>		PROJECT LOCATION Great Falls, Mor	ntana
DATE	START	ED 10	/18/19		co	MPLETED 10/18/19	LOGGED BY Kit Carson	CHECKED BY
DRILL	ING CO	NTRAC	TOR	Casc	ade Drilli	ng LP	GROUND ELEVATION Not Measured	TOC ELEVATION 6 ft
DRILI	ING EQ	UIPME	NT Mir	ni So	nic FF5U	53	NORTHING Not Measured	EASTING Not Measured
DRILI	ER Aa	ron Bra	Idley				TOTAL BORING DEPTH _7 ft bgs	BOREHOLE SIZE 6.25 in
DRILL	ING ME	THOD	Sonic				TOTAL WELL DEPTH 7 ft bgs	SCREEN INTERVAL _4 ft
SAMF	LING M	ETHOD	Conti	nuou	IS		GROUNDWATER LEVEL AT TIME OF D	RILLING N/A
O DEPTH (ft bgs)	RECOVERY (ft)	(mqq) DIA	LABORATORY ID	WATER LEVEL	GRAPHIC LOG	SA	MPLE DESCRIPTION	WELL CONSTRUCTION
	-	2.4				SAND AND GRAVEL, yel sand, subrounded to sub 2.0 (SP) SAND, very dark gra trace rections medium de	lowish brown (10YR 6/4), fine to medium angular gravel, loose, moist, no odor. ay (10YR 3/1), fine sand, trace gravel,	Cement seal
	5.5	329.7				(SP) SAME AS ABOVE , v	very dark gray (10YR 3/1) to grayish	⊷ Bentonite seal (hydrated)
5.0 5.0	-	302.9				6.0 BLIND DRILLED.		Sch. 40 3" PVC Screen (20-slot)
<u> </u>	-					7.0		 Filter pack (No. 12/20)
				<u> </u>		Botto	m of borehole at 7.0 feet.	, · · · · · · · · · · · · · · · · ·

Ramboll 1560 Broadway Suite 1905 Denver, CO 80202 Telephone: 303-382-5482

WELL ID: MW-103 BORING NUMBER: MW-103

PAGE 2 OF 2

CLIENT Calumet Montana Refining, LLC PROJECT NAME AOC-16 Pilot Study PROJECT NUMBER PROJECT LOCATION Great Falls, Montana LABORATORY ID WATER LEVEL RECOVERY (ft) GRAPHIC LOG DEPTH (ft bgs) (mqq) SAMPLE DESCRIPTION WELL CONSTRUCTION (ML) SILT, dusky red (10R 3/3), some very fine to fine sand, some gray (10YR 6/1) sand inclusions (5 to 12 cm diameter), medium stiff, dry, no odor. 8 131.8 17.5 **SAME AS ABOVE**, dusky red (10YR 3/2), no sand inclusions, non to very weakly laminated, increasing very fine to fine sand with depth. 2 20.0 7.6 2<u>1.0</u> (SP) VERY DENSE SAND, weak red (10R 5/3), very fine to fine sand, hard, dry, no odor. Bentonite seal RAMBOLL BASIC SB & WELL LOG - GINT STD US LAB.GDT - 11/1/19 14:33 - C:\USERSIKCARSONIDESKTOP/CMR_AOC16 PILOT STUDY.GP. (hydrated) 22.5 5 47.5 24.0 (SP) VERY FINE TO FINE SAND WITH SILT, weak red (10R 5/3) with trace yellow mottling, trace clay, weakly to moderately laminated, hard, dry, no odor. 25.0 4 48.5 27.5 29.0 Bottom of borehole at 29.0 feet.

:\DWG\RFI\WELLS\66-A-205.dwg Thu Jan 20 11:12:41 2000

GROUNDWATER DWG No. <u>66-A-205.1W</u> MRC W Project <u>RFI</u> Project NoInstall Easting <u>430.93</u> Northin SECTION <u>1</u> TOWNSHIE Method of Installation <u>B-5</u>	WELL INSTALLATION REPORT Vell No. MW-22 State Well No. Location SOUTH LOADING RACK ed By R. HAHN Date 10/8/99 ng -405.43 Zone 12 Participart Elevation 3328.45 Solution RANGE 3
LOG O BORING Depth Graphic Log Description H-Nu Readin CL, LEAN CLAY, DRY, STIFF, GRAY BEDROCK, RED SHALE, DRY, BEDROCK 13.8' T.D.=14'	F' BORING AND WELL OBSERVATION WELL INFORMATION Type of Well: MONITORING WELL Ground Elev. 3328.45' Top of Riser Elev. 3331.75' Vented Cap L1 Vented Cap L1 Vented Cap L1 UD of riser pipe: 20 Type of Pipe: PVC Type of Bockfill Around Riser: Top of Seel Elev. 3328.45' Top of Seel Elev. 3328.45' Type of Seel Elev. 3328.45' Type of Filter Waterial: EENTONITE L5=5' L9 L3 L6=9' L3 L6=9' L3 L6=14' L6 L4 L6 L4 L6 L4 L6 L4 L6 L4 L6 L4 L6 L4 L6 L4 L6 L4 L6 L4 L7 Remarks: COORDINATES=REFINERY GRID Prepared By: R. HAHN Logged By: D. FISHBAUGH DRILLER: MW #043 Drilling Company: O'KEFFE ENVIRONMENTAL DRILLING

81 - E

98 -

C: \DWG\RFI\WELLS\66-A-205A.dwg Thu Jan 20 11: 11: 15 2000

 $(\overline{\cdot})$

à.

· · · ·

ENVIRONMEN'I AL BOREHOLE LOG

BOREHOLE NO .: IM-West/MW-41

TOTAL DEPTH: 29 ft bgs

PROJECT II	NFORMATION	DRILLING IN	FORMATION	
PROJECT:	MRC Interim Measures	DRILLING CO.:	Boland Drilling Co.	
SITE LOCATION:	MRC, Great Falls	DRILLER:	Ben Boland	
JOB NO.:	01-367	RIG TYPE:	Air Rotary	
LOGGED BY:	Paul Skubinna	METHOD OF DRILLING	Air Rotary	
PROJECT MANAGER: DATES DRILLED:	Alan Frohberg 4-25-03	SAMPLING METHODS:	Screen/Shovel	

NOTES: Static Water 8.78 ft below top of north side of casing.

				F	FIELD DAT	A				
G	roundwater Level (ft) Sample Collected	Lab Samp Interval (ft)	le Graphic	Material Description	Recovery	Moisture	Odor	PID Reading Staining (ppm)	Well Const. Graphic	Well Const. Text
Indudud			0000	Silty Loam Topsoil. Silty 1/2" Gravel Fill.		Dry	\square	ŇA	##	Concrete seal and manhole. Bentonite
ulmhuhuhu				Light Brown Silly Weathered Claystone, Highly Friable. Maroon Silt.		Moist			and a static sta	seal and solid 2" PVC casing.
undududududu	×			Dark Maroonish Brown Silt w/ Fine Sand, Moderately Friable.		Dry				10/20 sili sand wel pack and PVC well screen.
Indudnihu				Red Weathered Silty Claystone Highly Friable. Redish Brown Weathered Siltstone w/ some Fine Sand, Moderately Friable.						
induction in the				Brown Weathered Siltstone w/ some Fine Sand, Moderate to Highly Friable. Red Weathered Sillstone.						
in hill where				Highly Friable. Dark Gray Weathered Clayey Siltsone, Moderately High Friability.	1	Moist Dry				
				Light Gray Clayey Siltstone, Moderately High Friability.						
3-			1	Purplish Gray Fine Sandy Mudrock, Low Friability, Competent Bedrock.						

Trihydro Corporation

Well Log

Page 1 of 1

Client:							
Calumet M	Montana Refinin	g, Great F	alls, Montana				
Date Started:		Date Co	mpleted:	Permit Numb	per:	\mathbf{N}	
Oct 17, 16		Oct 17,	16				
Logged By:		Driller:		1/4, 1/4, S, T	, R:	₽	
Wallace Col	es	Boland	l		T20N, R03E		
Drilling Co.:		Drilling F	Rig:	Borehole Dia	ameter:		
Boland Drilli	ing	CME 5	5	8.25"			
Method:		Measurir	ng Point Elev. (ftmsl):	Sample Type	ə:		
Hollow stem	n auger			Cuttings			
Total Depth (f	ťt):	Ground S	Surface Elev. (ftmsl):	Location:			
9							
(CONSTRUCTIO	N	SAMPL	ING DATA		LITHOLOGY	
Depth, feet		J-Plug	Blow Graphic ^T Count Log	OV pH lues Values	V	isual Description	
	_		(p	pm)			
					Sandy, SILT, brown	, sand fine grained, wet, no odor	
		- hydrated					
	KA KA	bentonite chips					
	KA KA	- 4" diameter					
	KA KA	schedule 40 PVC blank					
		casing					
		- 8.25" diameter			SANDSTONE, brow	n	
		borenoie					
		 10/20 silica sand pack 	1	1.2	Sandy SILT, brown,	sand fine grained, hydrocarbon odor,	
					Weathered Shale, d	ry	
		- 4" diameter					5_
		schedule 40 PVC 0.010"					
		factory slot					
		screen					
		- 4" diamator flat					
		PVC end cap			Red shale - dry		
		- split spoon					
		sampler driven					
		above					

Trihydro Corporation

Well Log

Page 1 of 1

Client:										
Calumet Monta	na Refining,	, Great Fal	lls, Mor	ntana						
Date Started:		Date Com	pleted:			Perm	nit Numb	er:	∇ N	
Oct 17, 16		Oct 17, 1	6							
Logged By:		Driller:				1/4, 1	1/4, S, T	, R:	₽	
Wallace Coles		Boland						T20N, R03E	+	
Drilling Co.:		Drilling Rig	g:			Bore	ho l e Dia	meter:		
Boland Drilling		CME 55				8.2	5"			
Method:		Measuring	Point E	Elev. (ftn	nsl):	Sam	ple Type	:		
Hollow stem auge	r					Cut	ttings			
Total Depth (ft):		Ground Su	urface E	Elev. (ftm	isl):	Loca	tion:			
8										
CONS	TRUCTION	N		S	AMP	LING	DATA		LITHOLOGY	
		J-Plug								
Depth,			Blow G	raphic	Va	alues	pH Values	Vi	isual Description	
				LUG		(ppm)				
								Topsoil, brown silty o	clay, some fine to coarse grained sand, moist	
I KA-	+ K\$4.		Ę		H,	0.3		Sand brown fine gr	ained moist to wet no odor	
I KA		entonite chips						eana, srenn, nne gr		
I KD-		" diameter								
	s	chedule 40								
	- F	PVC blank asing								
	8-1	3.25" diameter	-		H			Red sandstone, dry,	no odor	
	b b	orehole								
		0/20 silica	-		Η.	5 1		Sand brown find ar	ained strong bydrosorbon odor dry	
	s s	and pack				J. I		Sand, brown, nne gra	amed, strong hydrocarbon odor, dry	
5										5
2,222 2,222 2,222 2,222 2,222 2,222 2,222										
		l" diameter								
	F	PVC 0.010"	ľ							
		actory slot	:							
		ior com								
		l" diameter flat								
	<u> </u>	PVC end cap						Red shale		

															LOCATION ID
Lit	holo	gy I	Jog						Sheet	1 of	<u>3</u>				MW-58
Proje	ct Nai	ne					Project Number						Site II)	
AOC	C 16 C	Grour	idwat	er Investigatio	n	-		477-0	18-002						Calumet Refinery, Great Falls, MT
Drilli	ng Co	mpan <u>y</u>	y			Driller			Ground	Elevatio	on				Total Drilled Depth
D	Bo	land 1	Envir	onmental Drill	ing	(Devilat D'		D "T"		1. C.				<u>30</u> feet-bgs
Drilli	ng Eq	uipme	nt		Drilling N	Method	Borehole Diameter		Date/11	me Drill	ing Sta	arted			Date/Time Total Depth Reached
CMI	E Tru	ck M	ount	Rotary Rig	HS Au	igers/Air Rotary	10" / 6"		Watan I	avial (ha	5-Ap	r-17			5-Apr-17
Type	01 5a	npunş	g Devi	ce					water 1	ever (bg	<u>gs</u>)				
C	Sp	lit-Sp	oon t	to 9.5'. 15' Cor	e Barrel	below 9.5'			First	~t	f	èet-bg	s		Final
Samp	пепа	nmer				140 lbs			Geologi	sı					Checked by/Date
Type	Saf	ety H	amm	er nelude sketch in	field loop	Driving Weight	Drop = 30"				W. C	oles			
LUCA		esenp	1011 (1	neiuue sketen in	neia logo	00K)									
						Description						Es	timate %	of	Remarks
			ts			1		9			t				
pth	erval	overy	Coun	(Include litholog	gy, grain s	ize, sorting, angula	rity, Munsell color name	1 Cod		ology	Conte				
Ď	Inte	Reco	Blow	& notation, m	ninerology	, bedding, plasticity	, density, consistency,	ASTN		Lith	/ater		~		(Include all sample types & depth, odor, organic
0			Н		(etc., as applicable)		`			5	Gr	Sa	Fi	vapor measurements, etc.)
Ŭ	_			Topsoil											
0.5															
1	-	-		Brown silt	v fine	to coarse grai	ned SAND								
		F		damp no c	y, me odor	to course gran	ilea britte,								
	-	-		dump, no c	u 01.										
2															
		E		Brown silt	v. fine	to coarse grai	ned SAND.								
	-	-		damp, hvd	rocarbo	on odor.									
	-	-													
3		_													
	-	-													
	E														
4															
	E	E													
	_	-		Gray silty	CLAY	, damp, hydi	ocarbon odor.								
5	-	-													
5	_	_													
	-	-													
	E	E													
6															
		E		Brown/ara	av siltv	CLAY dam	n slight								
	_	-		hvdrocarb	on od	or.	p, engin								
_ _	-	-													
	_	_													
	F			Dark brow	vn/red,	silty CLAY,	damp to								
	L	Εl		moist, no	odor.										
8	_	_													
	-	-													
8.5	<u> </u>														
	F	\vdash		Dark brow	wn/red	silty find ar									
9	F			damn no	odor	Sity inte gra	anieu SAND,								
9.5	┝	\vdash			5001.										
	_			Red SHA	LE										
10															

Lif	hola	ogy I	.0g (continued)	Shee	et 2 of	3				LOCATION ID MW-58
	T			Description				Es	timate %	ó of	Remarks
Depth	Interval	Recovery	Blow Counts	(Include lithology, grain size, sorting, angularity, Munsell color name & notation, minerology, bedding, plasticity, density, consistency, etc., as applicable)	ASTM Code	Lithology	Water Content	Gr	Sa	Fi	(Include all sample types & depth, odor, organic vapor measurements, etc.)
10				Red SHALE, massive layers interbedded with thin friable, laminated, bedding planes. Hydrocarbon odor present in fractures at 10.6'.							
11				Brown SANDSTONE, massive layers interbedded with thin friable, laminated, bedding planes. Hydrocarbon odor and staining present in fractures at 11.6' and 13.5'							
13 14 ###											
15 16 17				Red SHALE, massive layers interbedded with thin friable, laminated, bedding planes. Becomes less competent with increasing depth. Fractured and friable at 18', no odor.							
19	- - -	-									
20				Gray MUDSTONE, no staining, no odor.							
21 22 23											

. .					01	2 6	2				LOCATION ID MW-58
	hole I	ogy I	Jog (continued)	Sheet	3 01	<u>3</u>	Fa	timata 9	of	Remarks
Depth	Interval	Recovery	Blow Counts	(Include lithology, grain size, sorting, angularity, Munsell color name & notation, minerology, bedding, plasticity, density, consistency, etc., as applicable)	ASTM Code	Lithology	Water Content	Gr	Sa	Fi	(Include all sample types & depth, odor, organic vapor measurements, etc.)
23	E	-		Same as above.							· · · · · ·
24	Ē	E									
	ŧ	F									
25	Ē	Ē									
	Ē										
26	F	-									
	Ē	Ē									
27	F	-									
	Ē										
28	Ē										
20	E	-									
	F	-									
30	F	-									
	Ē	-		TD @ 30' bgs.							
31	F			Well installed @ 16' bgs							
	Ē	-									
32	F	F									
	Ē										
33	Ē	E									
34	E	E									
	Ę	$\left - \frac{1}{2} \right $									
35	Ē	Ē									
	Ē	Ē									
36	F	F									

Project: AQC 16, Interim Masures Project Location: Grat Falls, MT MONITORING WELL CONSTRUCTION LOG Project Number: 477-018-002 FOR MW-58 Well Location MW-58 Date(s) Installed 4-5-Time and Drilling Installed By Coles Observed By 1n / **Total Depth** Method of Installation Screened Interval **Completion Zone** Remarks Elevation of Top of Riser Pipe: Height of Riser Above Ground: ft Ground Elevation: **ft MSL** ID/Type of Surface Casing: steel flush manted Vaul Type of Surface Seal: Contrete Depth of Surface Seal: ft ID/Type of Riser Pipe: 40 4" Sched . Boring Diameter: Type of Backfill: inches Bentoni Depth of Seal: ft 10" to 10' 6" 10'-30' Type of Seal: Benton Depth of Top of Filter Pack: ft Depth of Top of Screen: ft Type of Filter Pack: Report: ENV_WELL_CONSTR_ABOVE_GROUND; File: DUMMY.GPJ; 11/2/2001 Silica ID/Type of Screen: 4^{PH} Sched 40 PVC Screen Slot Size: 0 = 0 20 Depth of Bottom of Screen: 16 ft Depth of Bottom of Plugged Blank Casing: ft Type/Depth of Backfill/Seal Below Well: Cuttings , Silica Sona Total Depth of Boring: 30 ft NOTE: DIAGRAM IS NOT TO SCALE

		R A	AM	BO	51	LL	Ramboll 1560 Broadway Suite 19 Denver, CO 80202 Telephone: 303-382-54	905 82	WELL ID: AS-3 NG NUMBER: AS-3 PAGE 1 OF 2
С	LIEN	T Calu	met Mo	ontana l	Refin	ing, LLC	;	PROJECT NAME AOC-16 Pilot Study	
Р	ROJE	ECT NU	MBER					PROJECT LOCATION Great Falls, Mor	itana
D	ATE	STARTI	ED _10	/18/19		C(OMPLETED 10/16/19	LOGGED BY Kit Carson	CHECKED BY
D	RILL	ING CO	NTRAC		Casc	ade Drill	ing LP	GROUND ELEVATIONNot Measured	TOC ELEVATION 10 ft
Ь	RILL	ING EQ	UIPMEI	NT Mir	ni Soi	nic FF5L	J53	NORTHING Not Measured	EASTING Not Measured
	RILL	FR Aa	ron Bra					TOTAL BORING DEPTH 30 ft bas	BOREHOLE SIZE 6.25 in
	RILL			Sonic				TOTAL WELL DEPTH 30 ft bas	SCREEN INTERVAL 8 ft
				Conti	nuou	10			
Ľ					nuou	5			
DEDTU	o (ft bgs)	RECOVERY (ft)	(mqq) DIG	LABORATORY ID	WATER LEVEL	GRAPHIC LOG	SAM	IPLE DESCRIPTION	WELL CONSTRUCTION
	 2.5 _		7.6				(SM) SILTY SAND , dark y mottling, trace clay lenses	ellowish brown (10YR 4/4) with red s, trace rootlets, moist.	Sch. 40 2" PVC Riser
<u></u>			316.7			<u>a stative</u> 	SANDSTONE. grav (10YR	8 6/1), very fine to medium sand, thinly	
	-					· · · · · · · ·	bedded, iron oxide weathe	ering on bedding surfaces, hard, dry, slight	
	5.0	7	143.9				4.0 hydrocarbon odor. (SP) VERY FINE TO FINE reddish gray (10R 5/1), so slight hydrocarbon odor.	SAND , dark reddish gray (10R 3/2) to me silt, weakly laminated, very dense, dry	, E Bentonite seal
	7.5 _		8				SAME AS ABOVE , weak r 4/1) clay lenses, medium (red (10R 5/2), trace reddish gray (10R dense, dry.	(hydrated) - Filter pack (No. 12/20) Sch. (0.0" DVC
- 55:							SAME AS ABOVE, slightly	/ moist.	Screen (20-slot)
1 - -	00						10.0		
	-		1.6				(SP) VERY DENSE SAND trace fines, weakly lamina	, gray (5YR 5/1), very fine to fine sand, ted, very dense to hard, dry.	
						× × × × × × × × × × × × × × ×	(CL) CLAY WITH SILT , du stiff to hard, dry.	isky red (10R 3/2), weakly laminted, very	
	2.5_	10	0.2			× × × × × × × × × × × × × × × × × ×	SAME AS ABOVE, olive g	ray (5Y 5/2).	⊢ Bentonite seal (hydrated)
	5.0		0.2				(SP) VERY FINE TO FINE 5/1) with trace yellow mott moist.	SAND WITH SILT, reddish gray (2.5YR tling, very dense to hard, dry to very slight	У

Ramboll 1560 Broadway Suite 1905 Denver, CO 80202 Telephone: 303-382-5482

WELL ID: AS-3 BORING NUMBER: AS-3

PAGE 2 OF 2

PROJECT NAME AOC-16 Pilot Study

CLIEN	T Calu	met Mo	ontana F	Refin	ing, LLC	PROJECT NAME AOC-16 Pilot Study	
PROJ	ECT NU	MBER				PROJECT LOCATION _ Great Falls, Mor	<u>itana</u>
DEPTH (ft bgs)	RECOVERY (ft)	(mqq) DIG	LABORATORY ID	WATER LEVEL	GRAPHIC LOG	SAMPLE DESCRIPTION	WELL CONSTRUCTION
		0.2			× × × × × × × × ×	SILT WITH SAND, dusky red (10R 3/2), very fine to fine sand, stiff, dry.	
17.5					×××	(SP) VERY FINE TO FINE SAND WITH SILT , gray (10YR 5/1) with trace yellow mottling, dense, dry to very slightly moist.	
	10	0.1				18.0 (ML) SILT WITH VERY FINE TO FINE SAND, dusky red (10R 3/2) to dark gray (10YR 4/1), colors intermixed, stiff, dry.	-
 _20.0 		0.2				21.0	
						(SP) VERY FINE TO FINE SAND, gray (GLEY 1 6/1), trace to little fines, trace layers (1-2 mm) of light gray sand, very dense to hard, dry.	
22.5	5	0.2					
		0.5					⊷ Bentonite seal (hydrated)
		0.6				SAME AS ABOVE, very dark gray (10YR 3/1).	
27.5	5	0.6					
 _ 30.0						30.0 Rottom of boroholo at 30.0 feat	
						bolioni oi porenole al 30.0 reel.	

г									
		R A	AM	BC	ر ار	LL	Ramboll 1560 Broadway Suite 19 Denver, CO 80202 Telephone: 303-382-54	905 BORI	WELL ID: SVE-3 NG NUMBER: SVE-3 PAGE 1 OF 1
	CLIEN	T Calu	met M	ontana F	Refin	ing, LLC		PROJECT NAME AOC-16 Pilot Study	
	PROJI		MBER					PROJECT LOCATION _ Great Falls, Mor	ntana
	DATE	START	ED _10	/18/19		co	MPLETED <u>10/17/19</u>	LOGGED BY Kit Carson	CHECKED BY
	DRILL	ING CO	NTRAC		Casca	ade Drillir	ng LP	GROUND ELEVATION Not Measured	TOC ELEVATION 6 ft
	DRILL	ING EQ	JIPME	NT Min	i Sor	nic FF5U	53	NORTHING Not Measured	EASTING Not Measured
	DRILL	ER Aa	ron Bra	dley				TOTAL BORING DEPTH 7 ft bgs	BOREHOLE SIZE 6.25 in
	DRILL	ING ME	THOD	Sonic				TOTAL WELL DEPTH _7 ft bgs	SCREEN INTERVAL _4 ft
	SAMP	LING M	ETHOD	<u>Conti</u>	านอน	s		GROUNDWATER LEVEL AT TIME OF D	RILLING N/A
	DEPTH (ft bgs)	RECOVERY (ft)	(mdd) DID	LABORATORY ID	WATER LEVEL	GRAPHIC LOG	SAN	IPLE DESCRIPTION	WELL CONSTRUCTION
F	0.0						(SM) SILTY SAND, brown	(10YR 4/3), trace rootlets, trace iron	
							oxide mottling, medium de	ense, moist, no odor.	
			8.3						
ſ	2.5								Riser
							3.0		
STUDY.GPJ		7	88.5				SANDSTONE, gray (10YF iron oxide weathering on b hydrocarbon odor.	R 6/1), very fine to medium sand, trace bedding surfaces, hard, dry, slight	← Bentonite seal (hydrated)
16 PILOT S	50		5				(SP) VERY FINE TO FINE trace yellow mottling, trace dense, dry, no odor.	SAND , grayish brown (10YR 5/2) with e to little silt, weakly laminated, medium	
MR_AOC							SAME AS ABOVE, slightly	/ moist starting between 5.0 to 5.5 ft bgs.	Screen (20-slot)
SKTOP/C			4.9	CMR- SVE3-					Filter pack (No.
NDE				6.0-7.0- 191019		7	7.0 Detter		12/20)
RSO							Bottor	n of borehole at 7.0 feet.	
RAMBOLL BASIC SB & WELL LOG - GINT STD US LAB.GDT - 11/1/19 14:33 - C.\USERSIKCAR									

APPENDIX B Geotechnical Laboratory Report

Petroleum Services Division 3437 Landco Dr. Bakersfield, California 93308 Tel: 661-325-5657 Fax: 661-325-5808 www.corelab.com

November 18, 2019

David Heidlauf Ramboll US Corporation 333 W. Wacker Dr., Ste 2700 Chicago, IL 60606

Subject: Physical Properties Analysis Project: Calumet (CMR) CL File No: 1903777

Dear Mr.Heidlauf:

The attached file presents the final physical properties determination results for the samples submitted from your Calumet (CMR) Project.

Appropriate ASTM, EPA or API methodologies were used for this project and SOP's are available on request. The samples for this project are currently in storage and will be retained for thirty days past completion of testing at no charge. At the end of thirty days, the samples will be disposed. You may contact me regarding continued storage, disoposal, or return of the samples.

Thank you for this opportunity to be of service to Ramboll US Corporation. Please do not hesitate to contact us at (661-325-5657) if you have any questions regarding these results or if we can be of any additional service.

Sincerely, Core Laboratories

Eva Lopez Core Analyst

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, expressed or implied, as to the productivity, proper operations or profitableness, however, of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever.

|--|

Physical Properties Data

Petroleum Services

Ramboll US Corporation Project Name: Calumet (CMR)

Core Lab File No.: 1903777

			APLF	RP40	API RP40	API RP 40			API RP 40; ASTM D	5084; EPA 9100
		METHODS:	ASTM	D2216	D5550	ASTM D425M	Walkle	/-Black	100 psi Net Cont	ining Stress
			Mos	iture	Density	Total	Total Organic	Fractional	Effective ^{4,5}	Hydraulic ^{4,5}
Sample	Depth	Sample ¹	Con	tent	Dry Bulk	Porosity ²	Carbon	Organic Carbon	Permeability to Water	Conductivity
ID.	ft.	Orientation	% weight	cm ³ /cm ³	g/cm ³	%Vb ³	mg/kg	g/g	millidarcy	cm/s
CMR-AS2B-5.0-7.5-191018-ST	5.0-7.5	>	18.1	0.314	1.74	34.4	10700	1.07E-02	4.863	5.03E-06
CMR-AS3-6.0-7.0-191018-ST	6.0-7.0	>	15.5	0.289	1.86	30.0	7700	7.70E-03	<0.001	<10E-10
CMR-SB102-9.0-10-191018-ST	9.0-10	>	16.3	0.299	1.83	31.1	0006	9.00E-03	1.0076	1.03E-06

(1) Sample Orientation: H = horizontal; V = vertical.

(2) Total Porosity = no pore fluids in place; all interconnected pore channels.
(3) Vb = Bulk Volume, cc.
(4) Native State or Effective = With as-received pore fluids in place.
(5) Permeability to water and hydraulic conductivity measured at saturated conditions.

SIEVE and LASER PARTICLE SIZE SUMMARY

(METHODOLOGY: ASTM D422/D4464M)

Petroleum Services

Company: Ramboll US Corporation Project Name: Calumet (CMR)

CL File No.: 1903777 Date: 11/18/2019

	Grain Size	Median				Compor	ient Perce	ntages			
	Description**	Grain Size,				Sand Size					Silt &
Sample ID	(Mean from Folk)	mm	Gravel	VCoarse	Coarse	Medium	Fine	VFine	Silt	Clay	Clay
		10100		70 0	70 c	01.00	F F 20	10 50	00 01	11	10.45
18-810181-6.7-0.6-928-2000	Fine Grain Sand	1012.0	0.00	0.81	3.41	30.10	21.14	13.09	13.90	4.00	18.45
CMR-AS3-6.0-7.0-191018-ST	Sit	0.0129	0.00	000	000	1.03	7.11	12,62	50.67	28.57	79.24
	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;										
CMR-SB102-9.0-10.0-191018-ST	Very Fine Grain Sand	0.1232	0.80	2.53	6.49	24.62	15.24	14.72	29.05	6.55	35.60

Sieve and Laser Particle Size Analysis

		Particle	e Size Distrib	ution			Sor	Sorting Statistics (Folk)			
		Diam	eter	-	Wei	ght %	Parameter	Trask	Inman	Folk	
	[US Mesh]	[in.]	[mm]	[•]	[Incl.]	[Cum.]	- I di dinotoi	Huok	iiiiiaii	1 OIK	
	5/8 in	0.625000	15 87500	-4.00	0.000	0.00	Median		Fine sand size	d	
	3/8 in.	0.375000	9.50000	-3.25	0.000	0.00	Miculan		The Sand Size	ŭ	
Gravel	4	0.187008	4.75000	-2.25	0.000	0.00	(in)	0.0083	0.0083	0.0083	
	6	0.131890	3.35000	-1.75	0.000	0.00					
	8	0.092913	2.36000	-1.25	0.000	0.00	(mm)	0.2107	0.2107	0.2107	
	10	0.078740	2.00000	-1.00	0.000	0.00	Maan		Fine cond cite	d	
V Crse	14	0.000212	1 41421	-0.75	0.011	0.01	Weall		Fille Saliu Size	u	
Sand	16	0.046819	1.18921	-0.25	0.335	0.50	(in)	0.0082	0.0055	0.0063	
	18	0.039370	1.00000	0.00	0.309	0.81					
	20	0.033106	0.84090	0.25	0.217	1.02	(mm)	0.2077	0.1387	0.1595	
Coarse	25	0.027839	0.70711	0.50	0.275	1.30	Sorting	1	Poor		
Sanu	35	0.023410	0.59400	1 00	2 613	4 72	Softing		FUUI		
	40	0.016553	0.42045	1.25	5.681	10.40		1.878	1.447	1.754	
Medium	45	0.013919	0.35355	1.50	8.876	19.28					
Sand	50	0.011705	0.29730	1.75	10.772	30.05	Skewness	Str	ongly fine ske	wed	
	60	0.009843	0.25000	2.00	10.769	40.82		0.818	1 /05	0.527	
Fine	80	0.006960	0.21022	2.25	7 356	57 48		0.010	1.455	0.527	
Sand	100	0.005852	0.14865	2.75	5.742	63.22	Kurtosis		Very leptokurti	с	
	120	0.004921	0.12500	3.00	4.741	67.96					
	140	0.004138	0.10511	3.25	4.123	72.08		0.284	1.349	1.532	
V. Fine	170	0.003480	0.08839	3.50	3.649	75.73		mnonont Porco	ntagos		
Sanu	230	0.002920	0.07433	4 00	2 645	81.55	Gravel Sand	Silt	Clav	Silt + Clay	
	270	0.002069	0.05256	4.25	2.118	83.67	0.4.0.	0	0.01	ent enuj	
	325	0.001740	0.04419	4.50	1.644	85.31	0.00 81.55	13.90	4.55	18.45	
	400	0.001463	0.03716	4.75	1.268	86.58					
Silt	500	0.001035	0.02628	5.25	0.835	88.39	Percentile	F	Particle Diamet	er	
	635	0.000870	0.02210	5.50	0.717	89.11	[Weight, %]	[in.]	[mm]	[phi]	
		0.000732	0.01858	5.75	0.671	89.78	5	0.0405	0.4004	1 0110	
		0.000615	0.01562	6.00	0.659	90.44	5	0.0195	0.4961	1.0113	
		0.000435	0.01105	6.50	0.648	91.74	10	0.0168	0.4261	1.2308	
		0.000366	0.00929	6.75	0.636	92.38					
		0.000308	0.00781	7.00	0.626	93.01	16	0.0149	0.3783	1.4026	
		0.000217	0.00552	7.50	0.614	94.24	25	0.0127	0.3237	1.6274	
		0.000183	0.00465	7.75	0.608	94.85	-				
		0.000154	0.00391	8.00	0.602	95.45	40	0.0100	0.2536	1.9794	
		0.000129	0.00328	8.50	0.565	96.60	50	0.0083	0.2107	2,2464	
		0.000091	0.00232	8.75	0.535	97.14					
Clay		0.000077	0.00195	9.00	0.498	97.63	70	0.0045	0.1152	3.1182	
		0.000065	0.00164	9.25	0.456	98.09 98.50	75	0.0036	0.0917	3 4462	
		0.000046	0.00116	9.75	0.363	98.86	15	0.0000	0.0317	0.4402	
		0.000038	0.00098	10.00	0.314	99.18	84	0.0020	0.0509	4.2974	
		0.000032	0.00082	10.25	0.264	99.44	90	0.0007	0.0176	5 8204	
		0.000027	0.00058	10.75	0.214	99.82	90	0.0007	0.0170	0.0294	
		0.000019	0.00049	11.00	0.111	99.93	95	0.0002	0.0045	7.8100	
		0.000016	0.00041	11.25	0.059	99.99					
		0.000015	0.00036	11.50	0.014	100.00	**All Grain Sizes Classed Usin	g Wentworth Scale			

Sieve and Laser Particle Size Analysis

		Particle	e Size Distrik	oution			So	ting Statistics	s (Folk)	
		Diam	neter		Wei	ght %	Baramotor	Track	Inman	Folk
	[US Mesh]	[in.]	[mm]	[\$]	[Incl.]	[Cum.]	Falailletei	ITASK	IIIIIaII	TOIK
	5/0	0.005000	45.07500	1.00	0.000	0.00	Madian		0'14 1	
	5/8 IN.	0.625000	15.87500	-4.00	0.000	0.00	Median		Slit sized	
Gravel	3/8 III. 4	0.375000	9.50000 4 75000	-2.25	0.000	0.00	(in)	0.0005	0.0005	0.0005
Graver	6	0 131890	3 35000	-1.75	0.000	0.00	(,	0.0000	0.0000	0.0000
	8	0.092913	2.36000	-1.25	0.000	0.00	(mm)	0.0129	0.0129	0.0129
	10	0.078740	2.00000	-1.00	0.000	0.00	. ,			
	12	0.066212	1.68179	-0.75	0.000	0.00	Mean		Silt sized	
V Crse	14	0.055678	1.41421	-0.50	0.000	0.00	<i>a</i> >			
Sand	16	0.046819	1.18921	-0.25	0.000	0.00	(in)	0.0011	0.0005	0.0005
	20	0.039370	0.84090	0.00	0.000	0.00	(mm)	0.0267	0.0132	0.0131
Coarse	25	0.027839	0 70711	0.50	0.000	0.00	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0207	0.0152	0.0101
Sand	30	0.023410	0.59460	0.75	0.000	0.00	Sorting		Very poor	
	35	0.019685	0.50000	1.00	0.001	0.00				
	40	0.016553	0.42045	1.25	0.039	0.04		3.896	2.622	2.414
Medium	45	0.013919	0.35355	1.50	0.177	0.22	Channesso			
Sand	50	0.011705	0.29730	1.75	0.320	0.54	Skewness	N	lear symmetric	cal
	70	0.009843	0.23000	2.00	0.495	1.03		0 995	0.029	0.005
Fine	80	0.006960	0.17678	2.50	1.353	3.20		0.000	0.020	0.000
Sand	100	0.005852	0.14865	2.75	2.135	5.33	Kurtosis		Platykurtic	
	120	0.004921	0.12500	3.00	2.804	8.14				
	140	0.004138	0.10511	3.25	3.101	11.24		0.210	0.388	0.760
V. Fine	170	0.003480	0.08839	3.50	3.129	14.37				
Sand	200	0.002926	0.07433	3.75	3.153	17.52	Gravel Sand	mponent Perce	ntages	
	230	0.002401	0.06250	4.00	3.240	20.70	Glavel Salid	Siit	Glay	Silt + Glay
	325	0.001740	0.04419	4.50	3.318	27.37	0.00 20.76	50.67	28.57	79.24
	400	0.001463	0.03716	4.75	3.353	30.72				
Silt	450	0.001230	0.03125	5.00	3.367	34.09	D ama and the			
on	500	0.001035	0.02628	5.25	3.242	37.33	Weight %1	fin 1	article Diamet	er Inhil
	000	0.000732	0.01858	5.75	2.971	43.34		[III-]	Linni	[piii]
		0.000615	0.01562	6.00	3.116	46.46	5	0.0060	0.1530	2.7081
		0.000517	0.01314	6.25	3.245	49.70				
		0.000435	0.01105	6.50	3.128	52.83	10	0.0045	0.1131	3.1449
		0.000308	0.00929	7.00	2.937	58.62	16	0.0032	0.0811	3 6240
		0.000259	0.00657	7.25	2.906	61.52	10	0.0002	0.0011	0.0210
		0.000217	0.00552	7.50	3.068	64.59	25	0.0020	0.0502	4.3170
		0.000183	0.00465	7.75	3.291	67.88	40	0.0000	0.0000	F 4070
		0.000154	0.00328	8.00	3.544	75.12	40	0.0009	0.0220	5.4075
		0.000109	0.00276	8.50	3.705	78.83	50	0.0005	0.0129	6.2721
		0.000091	0.00232	8.75	3.554	82.38				
Clav		0.000077	0.00195	9.00	3.270	85.65	70	0.0002	0.0042	7.8941
		0.000065	0.00164	9.25	2.906	88.56	75	0.0001	0.0022	9 2400
		0.000034	0.00138	9.50	2.524	93.25	15	0.0001	0.0033	0.2409
		0.000038	0.00098	10.00	1.835	95.08	84	0.0001	0.0021	8.8683
		0.000032	0.00082	10.25	1.545	96.63				
		0.000027	0.00069	10.50	1.262	97.89	90	0.0001	0.0015	9.3875
		0.000023	0.00058	10.75	0.977	90.01 99.55	95	0.0000	0.0010	9 9880
		0.000016	0.00041	11.25	0.364	99.91		0.0000	0.0010	0.0000
		0.000015	0.00038	11.50	0.089	100.00	**All Grain Sizes Classed Usin	g Wentworth Scale	-	-
								3 Shimorith Ocale		

Sieve and Laser Particle Size Analysis

		Particle	e Size Distrib	ution				Sorting Statistic	s (Folk)	
		Diam	neter		Weig	ght %	Parameter	Trask	Inman	Folk
	[US Mesh]	[in.]	[mm]	[\$]	[Incl.]	[Cum.]	Farameter	Паэк	iiiiiaii	TOIK
	E /0 :++	0.005000	45.07500	4.00	0.000	0.00	Madian	, v		
	5/8 IN. 2/9 in	0.625000	15.87500	-4.00	0.000	0.00	wealan	V	ery fine sand si	zea
Gravel	3/8 III. 4	0.375000	4 75000	-2.25	0.000	0.00	(in)	0 0048	0 0048	0 0048
Clavel	6	0 131890	3 35000	-1 75	0.000	0.00	()	0.0010	0.0010	0.0010
	8	0.092913	2.36000	-1.25	0.000	0.00	(mm)	0.1232	0.1232	0.1232
	10	0.078740	2.00000	-1.00	0.801	0.80	. ,			
	12	0.066212	1.68179	-0.75	0.301	1.10	Mean	V	ery fine sand si	zed
V Crse	14	0.055678	1.41421	-0.50	0.507	1.61	<i>a</i> >	0.0074		
Sand	16	0.046819	1.18921	-0.25	0.792	2.40	(in)	0.0071	0.0032	0.0037
	20	0.033106	0.84090	0.00	0.934	<u> </u>	(mm)	0 1800	0.0818	0 0937
Coarse	25	0.027839	0.70711	0.50	1.089	5.39	()	0.1000	0.0010	0.0007
Sand	30	0.023410	0.59460	0.75	1.565	6.96	Sorting		Very poor	
	35	0.019685	0.50000	1.00	2.865	9.82				
	40	0.016553	0.42045	1.25	4.822	14.64		2.947	2.314	2.374
Medium	45	0.013919	0.35355	1.50	6.519	21.16	Skownooo	64		
Sand	50	0.011705	0.29730	1.75	7.025	28.19	Skewness	51	rongly fine ske	wea
	70	0.003043	0.23000	2.00	4 885	39.33		0 889	0.605	0.302
Fine	80	0.006960	0.17678	2.50	3.740	43.07		0.000	0.000	0.002
Sand	100	0.005852	0.14865	2.75	3.274	46.34	Kurtosis		Mesokurtic	
	120	0.004921	0.12500	3.00	3.337	49.68				
	140	0.004138	0.10511	3.25	3.526	53.20		0.292	0.736	1.056
V. Fine	170	0.003480	0.08839	3.50	3.647	56.85				
Sand	200	0.002926	0.07433	3.75	3.729	64.40	Gravel Sar	Component Perce	Clay	Silt + Clay
	270	0.002401	0.00256	4.00	3 831	68 23	Graver Sai		Ciay	Silt + Ciay
	325	0.001740	0.04419	4.50	3.626	71.86	0.80 63.	60 29.05	6.55	35.60
	400	0.001463	0.03716	4.75	3.151	75.01				
Silt	450	0.001230	0.03125	5.00	2.580	77.59	Densentile		Dontiala Diamat	
•	500 635	0.001035	0.02628	5.25 5.50	2.080	79.67 81.40	Weight %1	lin 1	Imm1	er Inhil
	000	0.000732	0.01858	5.75	1.546	82.95	[Weight, /o]	[111.]	[IIIII]	[pin]
		0.000615	0.01562	6.00	1.459	84.41	5	0.0297	0.7552	0.4051
		0.000517	0.01314	6.25	1.397	85.80	10	0.0400	0.4074	4 0005
		0.000435	0.01105	6.50	1.306	87.11	10	0.0196	0.4971	1.0085
		0.000308	0.00929	7 00	1.200	89.45	16	0.0160	0 4065	1 2986
		0.000259	0.00657	7.25	1.064	90.51				
		0.000217	0.00552	7.50	1.016	91.52	25	0.0127	0.3228	1.6312
		0.000183	0.00465	7.75	0.977	92.50	40	0.0080	0 2042	2 2010
		0.000129	0.00328	8.25	0.902	94.35	40	0.0000	0.2042	2.2313
		0.000109	0.00276	8.50	0.849	95.20	50	0.0048	0.1232	3.0211
		0.000091	0.00232	8.75	0.783	95.98				
Clay		0.000077	0.00195	9.00	0.711	96.69	70	0.0019	0.0485	4.3666
-		0.000065	0.00164	9.25	0.635	97.33	75	0.0015	0.0372	4 7494
		0.000046	0.00116	9.75	0.496	98.38	10	0.0010	0.0072	1.7 10 1
		0.000038	0.00098	10.00	0.431	98.82	84	0.0006	0.0164	5.9258
		0.000032	0.00082	10.25	0.369	99.18	00	0.0000	0.0070	7 4050
		0.000027	0.00069	10.50	0.305	99.49 99.73	90	0.0003	0.0072	7.1250
		0.000019	0.00049	11.00	0.165	99.89	95	0.0001	0.0029	8.4382
		0.000016	0.00041	11.25	0.088	99.98				
		0.000015	0.00038	11.50	0.021	100.00	**All Grain Sizes Classed	Using Wentworth Scale	Э	
1					1			-		

Bakersfield, CA	Number
Core Labratories LP 3437 Lando Dr.	SHEALY ENVIRONMENTAL SERVICES, ING. 106 Vantage Point Drive - West Columbia, BG-29172 Telephone No. 809-791-9700 - Fax No. 803-791-9111 www.sheatvlab.com

Number 097736

93308

Address Address Address Address Address	David Hiddlart	312-288-3800	
	Sampler's Signature	Analysis (Attach list if more space is	; needed) Page / of /
City Christiane State Zp Code Project Name (CMR)	X AND Printed Name in the Carso.	11507735 /turnu 23/1 23/1	Laboratory Lot Number
Project No.	Watt Watt	No of Containers	
Sample ID / Description Date (Containers for each sample may be combined on one line.)	Allos Allos G=Co G=Co C=Co C=Co	2 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Remarks / Cooler I.D.
Cm2- M2102-9.0-10-191018-10-18-19 1	6:15 G X	XXXX	
CMR - AS26 - 507.5 - 19101 1- 10.11 11	4:45 G X	XXXX	samples arriva
CmR - 453-60-7.0-19161 - 57 12.10 1	7:30 G X	XXXX	on werice o
	/	•	65.0F
/	4		Ke
	2		
			×
		7	
Turn Around Time Required (Prior lab approval required for expedited TAL.) St Standard	ample Disposal Return to Client Disposal by La	Possible Hazard Identification	Down Down (Specify)
1. Relinquished by	Date Time 1 20 0	1. Received by Condition	1023/0 Time
2. Reinquished by	Date Time	2. Received by	Date Time
3. Relinquished by	Date Time	3. Received by	Date Time
4. Relinquished by	Date Time	4. Laboratory received by	Date Time
Note: All samples are retained for four week	s from receipt	LAB USE ONLY	Ļ,

Document Number: F-AD-133 Effective Date: 08-01-2014

Record
Custody
Chain of
SHEALY

DISTRIBUTION: WHITE & YELLOW-Return to laboratory with Sample(s); PINK-Field/Client Copy

APPENDIX C Soil and Groundwater Analytical Laboratory Reports

10515 Research Drive Knoxville, TN 37932 Phone: (865) 573-8188 Fax: (865) 573-8133

Client:	Paul Lind Ramboll 175 North Suite 160	lquist h Corporate Drive	Phone -	:
	Brookfiel	d, WI 53045	Fax:	
Identifier:	078QJ	Date Rec:	10/19/2019	Report Date: 10/29/2019
Client Proj	ect #:	1690014124-002	Client Project Name:	Calumet (CMR)
Purchase (Order #:			
Analysis R	equested	: Plate Count		

Reviewed By:

Casy Brown

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

10515 Research Dr., Knoxville, TN 37932 Tel. (865) 573-8188 Fax. (865) 573-8133

CULTURE REPORT

Client: Project:	Ramboll Calumet (CMR)			MI Project Number: Date Received:	078QJ 10/19/2019
Sample Infor	mation				
Client Sample I	D:	CMR-SB102-11- 12-191018	CMR-SB103-11- 12-191018	CMR-MW103 -191022	
Sample Date:		10/18/2019	10/18/2019	10/22/2019	
Analyst/Reviewe	er:	CB	CB	CB	
Units:		cfu/g	cfu/g	cfu/mL	
Bacterial Gro	oup				
Aerobic Cult	turable	5.05E+02	3.05E+02	2.55E+05	

2.95E+02

3.15E+02

2.45E+05

2.65E+05

Legend:

Heterotrophs 95% LL

95% UL

NA = Not Analyzed NS = Not Sampled LL = 95% confidence lower limit UL = 95% confidence upper limit NG = no growth

3.97E+02

6.13E+02

Report of Analysis

Ramboll US Corporation

333 West Wacker Drive Suite 2700 Chicago, IL 60606 Attention: David Heidlauf

Project Name: Calumet (CMR) Project Number: 1690014124-002 Lot Number: **UJ19025** Date Completed: 10/29/2019

Kell M. Name

10/31/2019 3:55 PM Approved and released by: Project Manager: Kelly M. Nance

The electronic signature above is the equivalent of a handwritten signature. This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

SHEALY ENVIRONMENTAL SERVICES, INC.

SC DHEC No: 32010001 NELAC No: E87653 NC DENR No: 329 NC Field Parameters No: 5639

Case Narrative Ramboll US Corporation Lot Number: UJ19025

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W" qualifier

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

Sample Summary Ramboll US Corporation Lot Number: UJ19025

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	CMR-SB102-11-12-191018	Solid	10/18/2019 1230	10/19/2019
002	CMR-SB103-11-12-191018	Solid	10/18/2019 1140	10/19/2019

(2 samples)

SHEALY ENVIRONMENTAL SERVICES, INC.

Detection Summary Ramboll US Corporation Lot Number: UJ19025

			-			
e Sample ID	Matrix	Parameter	Method	Result	Q Units	Page
CMR-SB102-11-12-191018	Solid	Nitrate-Nitrite - N (soluble)	353.2	1.3	mg/kg	5
CMR-SB102-11-12-191018	Solid	Phosphorus	365.1	450	mg/kg	5
CMR-SB103-11-12-191018	Solid	Nitrate-Nitrite - N (soluble)	353.2	2.4	mg/kg	6
CMR-SB103-11-12-191018	Solid	Phosphorus	365.1	410	mg/kg	6
	e Sample ID CMR-SB102-11-12-191018 CMR-SB102-11-12-191018 CMR-SB103-11-12-191018 CMR-SB103-11-12-191018	e Sample ID Matrix CMR-SB102-11-12-191018 Solid CMR-SB102-11-12-191018 Solid CMR-SB103-11-12-191018 Solid CMR-SB103-11-12-191018 Solid	e Sample IDMatrixParameterCMR-SB102-11-12-191018SolidNitrate-Nitrite - N (soluble)CMR-SB102-11-12-191018SolidPhosphorusCMR-SB103-11-12-191018SolidNitrate-Nitrite - N (soluble)CMR-SB103-11-12-191018SolidPhosphorus	e Sample IDMatrixParameterMethodCMR-SB102-11-12-191018SolidNitrate-Nitrite - N (soluble)353.2CMR-SB102-11-12-191018SolidPhosphorus365.1CMR-SB103-11-12-191018SolidNitrate-Nitrite - N (soluble)353.2CMR-SB103-11-12-191018SolidPhosphorus365.1	e Sample ID Matrix Parameter Method Result CMR-SB102-11-12-191018 Solid Nitrate-Nitrite - N (soluble) 353.2 1.3 CMR-SB102-11-12-191018 Solid Phosphorus 365.1 450 CMR-SB103-11-12-191018 Solid Nitrate-Nitrite - N (soluble) 353.2 2.4 CMR-SB103-11-12-191018 Solid Phosphorus 365.1 410	e Sample IDMatrixParameterMethodResultQUnitsCMR-SB102-11-12-191018SolidNitrate-Nitrite - N (soluble)353.21.3mg/kgCMR-SB102-11-12-191018SolidPhosphorus365.1450mg/kgCMR-SB103-11-12-191018SolidNitrate-Nitrite - N (soluble)353.22.4mg/kgCMR-SB103-11-12-191018SolidPhosphorus365.1410mg/kg

(4 detections)

Inorganic non-metals

Client: Ramboll US Cor	poration					La	aboratory ID: UJ19	025-001	
Description: CMR-SB102-11-	12-191018						Matrix: Solid		
Date Sampled:10/18/2019 1230							% Solids: 86.1	10/20/2019 2035	
Date Received: 10/19/2019									
Run Prep Method	Analytical Method	Dilution	Analy	ysis Date Analyst	Prep [Date	Batch		
1	(Nitrate-Nitr) 353.2	1	10/24/	/2019 2347 AMR			33258		
1	(Phosphorus) 365.1	10	10/24/	/2019 1157 DMA	10/23/20	019 1429	9 32936		
Parameter		Nur	CAS nber	Analytical Method	Result	Q	LOQ	Units	Run
Nitrate-Nitrite - N (soluble)				353.2	1.3		0.23	mg/kg	1
Phosphorus		7723-	14-0	365.1	450		58	mg/kg	1

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Inorganic non-metals

Client: Ramboll US Cor	poration					La	boratory ID: UJ19	025-002	
Description: CMR-SB103-11-	12-191018						Matrix: Solid		
Date Sampled:10/18/2019 1140							% Solids: 86.3	10/20/2019 2035	
Date Received: 10/19/2019									
Run Prep Method	Analytical Method	Dilution	Anal	ysis Date Analyst	Prep	Date	Batch		
1	(Nitrate-Nitr) 353.2	1	10/24	/2019 2348 AMR			33258		
1	(Phosphorus) 365.1	10	10/24	/2019 1157 DMA	10/23/2	019 1429	32936		
Parameter		Nur	CAS nber	Analytical Method	Result	Q	LOQ	Units	Run
Nitrate-Nitrite - N (soluble)				353.2	2.4		0.23	mg/kg	1
Phosphorus		7723-	14-0	365.1	410		58	mg/kg	1

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

QC Summary

Sample ID: UQ32936-001	Matrix: Solid	
Batch: 32936	Prep Method:	
Analytical Method: 365.1	Prep Date: 10/23/2019 1429	

Parameter	Result	Q	Dil	LOQ	Units	Analysis Date
Phosphorus	ND		1	5.0	mg/kg	10/24/2019 0943

 LOQ = Limit of Quantitation
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 + = RPD is out of criteria

 LOD = Limit of Detection
 ND = Not detected at or above the LOQ
 + = RPD is out of criteria

 Note: Calculations are performed before rounding to avoid round-off errors in calculated results
 Shealy Environmental Services, Inc.

Inorganic non-metals - LCS									
Sample ID: UQ32936-002 Batch: 32936 Analytical Method: 365.1		Matrix: Solid Prep Method: Prep Date: 10/23/2019 1429							
Parameter	Spike Amount (mg/kg)	Result (mg/kg)	Q	Dil	% Rec	% Rec Limit	Analysis Date		
Phosphorus	25	24		1	97	90-110	10/24/2019 0943		

LOQ = Limit of Quantitation P = The RPD between two GC columns exceeds 40% N = Recovery is out of criteria DL = Detection Limit J = Estimated result < LOQ and ≥ DL</td> + = RPD is out of criteria LOD = Limit of Detection ND = Not detected at or above the LOQ + = RPD is out of criteria Note: Calculations are performed before rounding to avoid round-off errors in calculated results Shealy Environmental Services, Inc.

	Inorganic non-metals - MB	
Sample ID: UQ33258-001 Batch: 33258	Matrix: Solid	
Analytical Method: 353.2		

Parameter	Result	Q	Dil	LOQ	Units	Analysis Date
Nitrate-Nitrite - N (soluble)	ND		1	0.20	mg/kg	10/24/2019 2332

 LOQ = Limit of Quantitation
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 + = RPD is out of criteria

 LOD = Limit of Detection
 ND = Not detected at or above the LOQ

 Note: Calculations are performed before rounding to avoid round-off errors in calculated results

 Shealy Environmental Services, Inc.

Inorganic non-metals - LCS

Sample ID: UQ33258-002	2	Matrix: Solid					
Batch: 33258							
Analytical Method: 353.2							
	Spike						
Parameter	Amount (mg/kg)	Result (mg/kg)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Nitrate-Nitrite - N (soluble)	0.80	0.83		1	103	90-110	10/24/2019 2333

 LOQ = Limit of Quantitation
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 + = RPD is out of criteria

 LOD = Limit of Detection
 ND = Not detected at or above the LOQ
 + = RPD is out of criteria

 Note: Calculations are performed before rounding to avoid round-off errors in calculated results
 Shealy Environmental Services, Inc.

Chain of Custody and Miscellaneous Documents
SHEALLY Chain of Custody Record	SHEALY E 106 Vantag Telephone	ENVIRON 3e Point Dri No. 803-79 WWW	MENTAL SERVICE (e • West Columbia, SC 1-9700 Fax No. 803-76 shealylab.com	S, INC. 29172 31-9111	Number	099864
arent Ramboll	Report to Contact	Hadlar F	Surt Tarment	Tokplyure No (E-mail (312) 288-380	0	Ouate Ma.
333 W Whicker Dr Ste#2700	Sampler's Signeth	a l	Λ	Analysis (Attach list if more space is need	(jas	Page 1 of 1
Chicago Ne Coole	X KU					
Project Name ((MR))	George	14.	Lerson	58		
Project No. [6/mp14124] 002	Million GM	Matrix	No at Correthers by Preservative Type	шауо изб		UJ19025
Sample ID / Description Date (Containers for each sample may be contributed on one line.)	910000y 910000y 910000y 910000y 910000y 910000y	100040 100024 -010 -010	Кн 9809 НОРИ КЭШ КЭШ КЭШ	2enfi 2enfi		KMN2
CMR-58102-11-12-191018 10-18-19	1230 6					
CmR-56103-11-12-191018 V	N:40 G					
					-	
	1					
	-	1	/	the inter-		
				That C		
					/	
	_					/
Typn Around Time Required (Prior is) approval required for expedited Int.) 5 A Standard - Rush (Spoolty)	Sampie Disposal 🗆 Return to Olient 🗆 0	disposal by Lab	Possible Hazard Identification	🗆 Skin Irritant 🔤 Polson 🖂 Uoknown	OC Rogiments	s (Specity)
1. Refinduction by	Date	Twine	1. Received by		Deale I	,ue
a second	10-18-19	1620				
2. Halinguethed by	Dale	Time	2. Received by		Diske 7	itte:
 Refinquished by 	Date	Time	3. Roostved by		Date 7	CTAC:
4. Retinguesties of FED EX	Date 10/19/ 19	190 SIPO	4. Laboratory received by	2 Hite	Date Date 119 1	0915 MIS
Note: All samples are retained for four week unless other arrangements are mu	ks from rečeipt lade.		LAB USE ONLY Received on toe (Choie) //es	O No Ice Pack Receipt Tento	4.8 c	
DISTRIBUTION: WHITE & YELLOW-Return to leboratory with Samuletell.	PINK-Field/Clinet Co			Document	minic E.AD.124	Effective Date: 06.01.001.0

Shealy Environmental Services, Inc.

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

SHEALY ENVIRONMENTAL SERVICES, INC.

SHEALY ENVIRONMENTAL SERVICES, INC.

Shealy Environmental Services, Inc. Document Number: ME0018C-14

Sample Receipt Checklist (SRC)

Page 1 of 1 Effective Date: 8/2/2018

Client: RAMBOLL	Cooler Inspected by/date: UKH / 10-19-2019 Lot #: UJI	0025
Means of receipt: S	ESI 🔲 Client 🗋 UPS 🖌 FedEx 📋 Other:	
Yes No	1. Were custody seals present on the cooler?	
Yes No NA	2. If custody seals were present, were they intact and unbroken?	
pH Strip ID: <u>NA</u>	Chlorine Strip ID: NA Tested by: NA	
Original temperature upor 4.8 /4.8 °C NA /N	n receipt / Derived (Corrected) temperature upon receipt %Solid Snap-Cup IA °C NA /NA °C NA /NA °C	ID: 19-1616
Method: 🔽 Temperature	Blank Against Bottles IR Gun ID: 5 IR Gun Correction Factor	0 °C
Method of coolant:	Wet Ice 🗌 Ice Packs 🔲 Dry Ice 🗌 None	
🗆 Yes 🗆 No 🗹 NA	 If temperature of any cooler exceeded 6.0°C, was Project Manager Notified PM was Notified by: phone / email / face-to-face (circle one) 	:d?
Ves No DNA	4. Is the commercial courier's packing slip attached to this form?	
Ves No	5. Were proper custody procedures (refinquished/received) followed?	
Yes No	6. Were sample IDs listed on the COC?	
Yes No	7. Were sample IDs listed on all sample containers?	
V Yes 🗆 No	8. Was collection date & time listed on the COC?	
Yes No	9. Was collection date & time listed on all sample containers?	
🗹 Yes 🗖 No	10. Did all container label information (ID, date, time) agree with the COC?	
Ves No	11. Were tests to be performed listed on the COC?	
V Yes No	12. Did all samples arrive in the proper containers for each test and/or in good (unbroken, lids on, etc.)?	1 condition
Yes No	13. Was adequate sample volume available?	
Z Yes No	14. Were all samples received within 1/2 the holding time or 48 hours, whiche	ver comes first?
Yes No	15. Were any samples containers missing/excess (circle one) samples Not list	ed on COC?
Yes No NA	16. For VOA and RSK-175 samples, were bubbles present >"pea-size" (¼"or in any of the VOA vials?	6mm in diameter)
Yes No Z NA	17. Were all DRO/metals/nutrient samples received at a pH of < 2?	
🗆 Yes 🗆 No 🗹 NA	18. Were all cyanide samples received at a pH > 12 and sulfide samples recei	ved at a $pH > 9?$
Yes No NA	 Were all applicable NH₃/TKN/cyanide/phenol/625 (< 0.5mg/L) samples f chlorine? 	ree of residual
□ Yes □ No ☑ NA	20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designati	ons, etc)
	correctly transcribed from the COC into the comment section in LIMS?	
Yes No	21. Was the quote number listed on the container label? If yes, Quote # 2243	3
Sample Preservation (I	Must be completed for any sample(s) incorrectly preserved or with headspace.)	
Sample(s) NA	were received incorrectly preserved and were a	justed accordingly
in sample receiving with	NA mL of circle one: H2SO4, HNO3, HCl, NaOH using SR # NA	
Time of preservation NA	If more than one preservative is needed, please note in the comments	s below.
Sample(s) NA	were received with bubbles >6 n	nm in diameter.
Samples(s) NA	were received with TRC > 0.5 mg/L (If #19 is	no) and were
adjusted accordingly in sa	mple receiving with sodium thiosulfate (Na2S2O3) with Shealy ID: NA	
SR barcode labels applied	by: LKH Date: 10-19-2019	
Comments:		

Report of Analysis

Ramboll US Corporation

333 West Wacker Drive Suite 2700 Chicago, IL 60606 Attention: David Heidlauf

Project Name: Calumet (CMR)

Project Number: 1690014124-002

Lot Number: UJ23054

Date Completed:11/01/2019 Revision Date: 11/08/2019

Kell M. Name

11/08/2019 1:46 PM Approved and released by: Project Manager: Kelly M. Nance

The electronic signature above is the equivalent of a handwritten signature. This report shall not be reproduced, except in its entirety, without the written approval of Shealy Environmental Services, Inc.

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

SHEALY ENVIRONMENTAL SERVICES, INC.

SC DHEC No: 32010001 NELAC No: E87653 NC DENR No: 329 NC Field Parameters No: 5639

Case Narrative Ramboll US Corporation Lot Number: UJ23054

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved NELAC standards, the Shealy Environmental Services, Inc. ("Shealy") Quality Assurance Management Plan (QAMP), standard operating procedures (SOPs), and Shealy policies. Any exceptions to the NELAC standards, the QAMP, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Shealy Project Manager listed on the cover page.

This report supersedes and replaces any prior reports issued under this lot number. The details of the applicable revisions are detailed below.

Report Revision

The sample ID was changed to "CMR-MW103-191022" at theclient's request.

Sample Summary Ramboll US Corporation Lot Number: UJ23054

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	CMR-MW103-191022	Aqueous	10/22/2019 1435	10/23/2019

(1 sample)

Detection Summary Ramboll US Corporation

Lot Number: UJ23054

Sample	Sample ID	Matrix Parameter	Method	Result Q	Units	Page
001	CMR-MW103-191022	Aqueous Phosphorus	365.1	0.15	mg/L	5

(1 detection)

Inorganic non-metals

Client: Ramboll US Corp	poration						Laboratory ID: UJ23054-007	1	
Description: CMR-MW103-191	022						Matrix: Aqueous		
Date Sampled:10/22/2019 1435									
Date Received: 10/23/2019									
Run Prep Method 1	Analytical Method (Nitrate-Nitr) 353.2	Dilution 1	Analy: 10/25/2	sis Date Analyst 2019 2216 AMR	Prep [Date	Batch 33422		
2	(Phosphorus) 365.1	1	10/31/2	2019 1735 MSG			34137		
			CAS	Analytical		~	1.00		5
Parameter		Nun	nber	Method	Result	Q	LUQ	Units	Run
Nitrate-Nitrite - N				353.2	ND		0.020	mg/L	1
Phosphorus		7723-	14-0	365.1	0.15		0.050	mg/L	2

LOQ = Limit of QuantitationB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeND = Not detected at or above the LOQN = Recovery is out of criteriaP = The RPD between two GC columns exceeds 40%H = Out of holding timeW = Reported on wet weight basis

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

QC Summary

		5				
Sample ID: UQ33422-001				Matrix: Aqueous		
Batch: 33422						
Analytical Method: 353.2						
Parameter	Result	Q	Dil	LOQ	Units	Analysis Date
Nitrate-Nitrite - N	ND		1	0.020	mg/L	10/25/2019 2201

 LOQ = Limit of Quantitation
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 + = RPD is out of criteria

 LOD = Limit of Detection
 ND = Not detected at or above the LOQ
 + = RPD is out of criteria

 Note:
 Calculations are performed before rounding to avoid round-off errors in calculated results

 Shealy Environmental Services, Inc.
 + = RPD

Sample ID: UQ33422-002				Matrix	: Aqueous		
Batch: 33422							
Analytical Method: 353.2							
Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
Nitrate-Nitrite - N	0.80	0.77		1	96	90-110	10/25/2019 2202

 LOQ = Limit of Quantitation
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 + = RPD is out of criteria

 LOD = Limit of Detection
 ND = Not detected at or above the LOQ

 Note:
 Calculations are performed before rounding to avoid round-off errors in calculated results

 Shealy Environmental Services, Inc.

		5				
Sample ID: UQ34137-001 Batch: 34137				Matrix: Aqueous		
Analytical Method: 365.1						
Parameter	Result	0	Dil	1.00	Units	Analysis Data
l'alameter	Nesun	Q	DII	LOQ	Units	Analysis Date
Phosphorus	ND		1	0.050	mg/L	10/31/2019 1718

 LOQ = Limit of Quantitation
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 + = RPD is out of criteria

 LOD = Limit of Detection
 ND = Not detected at or above the LOQ
 + = RPD is out of criteria

 Note:
 Calculations are performed before rounding to avoid round-off errors in calculated results

 Shealy Environmental Services, Inc.
 + = RPD

Sample ID: UQ34137-002				Matrix	: Aqueous		
Balch: 34137							
Analytical Method: 365.1							
	Spike						
	Amount	Result	-			% Rec	
Parameter	(mg/L)	(mg/L)	Q	Dil	% Rec	Limit	Analysis Date
Phosphorus	1.0	1.0		1	102	90-110	10/31/2019 1721

 LOQ = Limit of Quantitation
 P = The RPD between two GC columns exceeds 40%
 N = Recovery is out of criteria

 DL = Detection Limit
 J = Estimated result < LOQ and ≥ DL</td>
 + = RPD is out of criteria

 LOD = Limit of Detection
 ND = Not detected at or above the LOQ
 + = RPD is out of criteria

 Note:
 Calculations are performed before rounding to avoid round-off errors in calculated results

 Shealy Environmental Services, Inc.

Chain of Custody and Miscellaneous Documents

SHEALY Chain of Custody Record	SHEALY ENVIRON 106 Vantage Point Dri Telephone No. 803-79 www	IMENTAL SERVICE ve • West Columbia, SC n1-9700 Fax No. 803-7 shealylab.com	S, INC. 2 29172 91-9111	Number	099863
CHENT RAMPS [Report to Contact Hord	auf	Telephone No. / E-mail 8 - 38.	8	Quote No. 27433
Address 333 WWacker Dr Ste#2700	Sampler's Signature		Analysis (Attach fist If more space is n	eded)	Page of
Chicago State State 24 Cade	Printed Name		See.		
(alonet (Cure)	per caron		rayo		UJ23054
Project No.	al and a state of a st	No of Containers by Preservative Type	tso:		Lance
Surrapic ID / Description (Contervers for each sample may be combined on one (inc.)	anouth anouth anouth anouth anouth anouth	AU SLOS HONN IOH BONH POSZH	12/ W		Remedia / Gooler I,D.
CMR - MW 102- 191622 10-22-4	ky 35 9 X	×	XX		
	7			- 	
G					
kc.		/			
(a)	1	/	-1		
/	6		4	No lo	
	7		/		5/3
	/				
		/			
		/			/
Turn Around Time Required (Piat lab approval required for expedited IRL) S. C Standard C Rush (Specify)	ample Disposal Return to Client E Disposal by Lab	Possitule Heizenof Interntitionation	n ⊡ Skin Irnitent:	DC Requirements	s (Specify)
1. Relinquished by C	Date Trave	1. Received by		Deta	et.)
2. Refinquished by	Date	2. Received by		Dete	6LL)
3. Relinquishea by	Date Three	3. Received by		Date	etti
4. Reilinguistrea by Fed EX	10/23/19 1027	4. Laboratory medieved by	& Hite	Dele 10) Z3/ 19	4201 em
Note: All samples are retained for four week unless other arrangements are ma	s from receipt ide.	LAB USE ONLY Reserved on toe (Circle) R	es) No ice Pack Receipt Terr	a. 3.6 °C	
DISTRIBUTION: VIMITE & YELLOW-Return to laboratory with Sample(s); F	Punk-FeldiQient Copy	>	Documen	Mumber: F-AD-133	Effective Date: 06-01-2014

Shealy Environmental Services, Inc.

Shealy Environmental Services, Inc. Document Number, ME0018C-14

Sample Receipt Checklist (SRC)

Page 1 of 1

Effective Date: 8/2/2018

Client: RAMBOLL	Cooler Inspected by/date: LKH / 10-23-2019 Lot #: UJ23054
Means of receipt: S	SESI Client UPS V FedEx Other:
Ves No	1. Were custody seals present on the cooler?
Yes No N/	A 2. If custody scals were present, were they intact and unbroken?
pH Strip ID: 19-1760	Chlorine Strip ID: 19-1867 Tested by: LKH
Original temperature upo	on receipt / Derived (Corrected) temperature upon receipt / Solid Snap-Cup ID: NA
3.6 /3.6 °C NA /	NA °C NA /NA °C NA /NA °C
Method: 🛛 Temperature	Blank Against Bottles IR Gun ID: 5 IR Gun Correction Factor: 0 °C
Method of coolant: 🗹	Wet Ice 🗌 Ice Packs 🔲 Dry Ice 🗌 None
	 If temperature of any cooler exceeded 6.0°C, was Project Manager Notified?
	PM was Notified by: phone / email / face-to-face (circle onc).
Yes No N	A 4. Is the commercial courier's packing slip attached to this form?
Yes No	5. Were proper custody procedures (relinquished/received) followed?
V Yes INO	6. Were sample IDs listed on the COC?
Yes No	Were sample IDs listed on all sample containers?
V Yes No	8. Was collection date & time listed on the COC?
	 was concepton date & time listed on all sample containers? D D'1-10 and the list of the first of
Yes No	10. Did all container label information (ID, date, time) agree with the COC?
Yes No	11. Were tests to be performed listed on the COC?
V Yes 🗆 No	12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?
Yes No	13. Was adequate sample volume available?
Yes No	14. Were all samples received within 1/2 the holding time or 48 hours, whichever comes first?
Yes No	15. Were any samples containers missing/excess (circle one) samples Not listed on COC?
	A lin any of the VOA vials?
V Yes No No	A 17. Were all DRO/metals/nutrient samples received at a nH of < 2?
Yes No VN	A 18. Were all evanide samples received at a $pH > 12$ and sulfide samples received at a $pH > 9?$
	19. Were all applicable NH ₁ /TKN/cyanide/phenol/625 (< 0.5mg/L) samples free of residual
V Yes LINO LIN	A chlorine?
	20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc)
	correctly transcribed from the COC into the comment section in LIMS?
Yes No	21. Was the quote number listed on the container label? If yes, Quote # 22433
Sample Preservation	(Must be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s) NA	were received incorrectly preserved and were adjusted accordingly
in sample receiving with	NA mL of circle one: H2SO4, HNO3, HCl, NaOH using SR # NA
Time of preservation N/	A If more than one preservative is needed, please note in the comments below.
Sample(s) <u>NA</u>	were received with bubbles >6 mm in diameter.
Samples(s) NA	were received with TRC ≥ 0.5 mg/L (If #19 is no) and were
adjusted accordingly in s	sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: <u>NA</u> .
SR barcode labels applie	ed by: LKH Date: 10-23-2019
Comments:	
6	
- 644 America Inc.	

APPENDIX D AS/SVE Equipment Process and Instrumentation Diagram

APPENDIX E MDEQ Air Quality Bureau *De Minimis* Notification Letter and Approval

August 30, 2019

Mr. Shawn Juers Montana Department of Environmental Quality Air Quality Bureau Permitting Services Engineer 1520 E. Sixth Avenue P.O. Box 200901 Helena, MT 59620-0901

Re: De Minimis Notification for Soil Vapor Sampling Calumet Montana Refining Great Falls Refinery

Mr. Juers:

Calumet Montana Refining, LLC (Calumet) owns and operates the Great Falls Refinery, located at 1900 10th Street Northeast in Great Falls, Montana. Calumet has contracted with Ramboll US Corporation (Ramboll) to conduct soil vapor sampling at three pilot test locations within the refinery to gather necessary information for upcoming soil remediation activities. Montana Department of Environmental Quality (MDEQ) recommended Calumet calculate potential emissions from the sampling event for comparison with the Montana air permit exclusion for de minimis changes (ARM 17.8.745).

Calumet determined potential volatile organic compound (VOC) emissions from the sampling event meet the de minimis change criteria, further described below, and this letter serves as required notification to MDEQ.

Sampling Event Description

On June 10, 2019 the AOC-16 Interim Measure Evaluation Report (Ramboll, 2019) (the "Report") was submitted to the MDEQ. The Report proposed field scale pilot tests for the selected interim measures technologies of biosparging, air sparging (AS), and soil vapor extraction (SVE). These technologies are briefly described below. The locations of the proposed pilot testing areas (south of AOC-16, area near MW-64, and north of North River Road, area near MW-41) are included as Attachment 1.

AS/SVE systems involve the injection of air (AS) below the water table in an
effort to drive the mass transfer of dissolved- and sorbed-phase contaminant
mass into the flowing air stream. The injected air travels upward, through
channels created in the saturated soil matrix, carrying the VOCs removed from
the groundwater into the vadose zone soil. In the unsaturated zone, an SVE
system extracts the impacted air and discharges vapor to the atmosphere.

The objectives of the pilot tests are to gather necessary information to design an interim measure remedial technology to stabilize and reduce hydrocarbon related groundwater concentrations to below applicable standards and prevent migration of the dissolved

phase groundwater downgradient in the areas immediately south of AOC-16 and immediately north of North River Road in the right-of-way (ROW). Additionally, the pilot tests will allow quantification of the extractable vapor-phase petroleum VOCs. This quantification of extractable vapor will be used for the design of the interim measure and potential treatment requirements. A follow on air permit is expected late 2018, early 2019 for a summer 2020 startup of a full system.

Potential Emissions

Over a total of three days, air samples will be collected from three different pilot test locations. Potential VOC emissions from the sampling event are based on the maximum concentrations of known VOCs in the soil vapor near the sampling locations, the maximum SVE extraction rate (325 cubic feet per minute), and continuous operation for the three-day sampling period. Based on these conservative emission calculations, potential VOC emissions from the pilot test equal 1.03 tons. Detailed emission calculations are included as Attachment 2.

Regulatory Review

Calumet reviewed federal and Montana environmental regulations to determine air quality regulations that may apply to the sampling activities addressed by this notification.

New Source Performance Standards

New Source Performance Standards (NSPS) are nationally uniform standards applied to specific categories of stationary sources that are constructed, modified, or reconstructed after the standard was proposed. NSPS are found in Title 40, Part 60 of the Code of Federal Regulations (CFR). NSPS usually represent a minimum level of control that is required on a new source.

There are no NSPS that are applicable to planned air sampling activities.

National Emission Standards for Hazardous Air Pollutants (40 CFR Part 61)

The regulations contained in 40 CFR part 61 establish emission standards, work practices, or both for certain source categories of hazardous air pollutant (HAP) emissions. 40 CFR part 61 represents the federal regulatory mechanism used to regulate HAPs under the CAA before the CAA was amended November 15, 1990. The emission standards under 40 CFR part 61 represent risk-based standards that are intended to provide an ample margin of safety to protect public health.

There are no applicable NESHAPs, under Part 61, for the planned air sampling activities.

National Emission Standards for Hazardous Air Pollutants (40 CFR Part 63)

The regulations contained in 40 CFR part 63 establish emission standards for certain source categories of HAP emissions. This part represents the federal regulatory mechanism used to regulate HAPs under the CAA after the CAA was amended November 15, 1990.

A key component of regulatory applicability under 40 CFR part 63 is the distinction between a "major source" and an "area source" of HAPs. In short, a major source is a stationary source that emits or has the potential to emit considering controls, in the aggregate, 10 tpy or more of any HAP or 25 tpy or more of any combination of HAPs. An area source means "any stationary source of HAPs that is not a major source as defined in this part."

The Great Falls Refinery is a "major source" under 40 CFR part 63. As a result, the refinery is potentially subject to 40 CFR part 63 emission standards that are applicable to major sources of HAPs.

The only potentially applicable NESHAP for the sampling activities is Subpart GGGGG (Site Remediation). However, sampling is not subject to any requirements under this NESHAP because monitoring and measuring of contamination using wells or by sampling is not considered site remediation.¹

ARM, Title 17 – Environmental Quality, Chapter 8 – Air Quality Regulations

The regulations contained in ARM, Title 17 – Environmental Quality, Chapter 8 address, among other things, air quality permitting applicability and procedures for new and existing stationary sources of regulated air pollutants, emission standards and limitations for new and existing stationary sources of regulated air pollutants, control technology requirements for new and existing stationary sources of regulated air pollutants, and ambient air standards in Montana.

New Source Review

New Source Review (NSR) is a pre-construction permitting program applicable to certain stationary sources. The primary purpose of NSR is to support the attainment and maintenance of specific ambient air quality standards across the country. The Great Falls Refinery is located in Cascade County, which is designated under the Clean Air Act (CAA) as attainment/unclassified for all criteria pollutants; therefore, the potential emissions from proposed sampling event are compared to applicable Prevention of Significant Deterioration (PSD) permitting thresholds (ARM 17.8, Subchapter 8).

Potential VOC emissions from the sampling event (1.03 tons) are less than the PSD significant emission rate of 40 tons per year, and PSD review is not required for this project.

Exclusion for De Minimis Changes

ARM 17.8.745 identifies the criteria for de minimis changes that do not require a Montana air quality permit (MAQP), as well as the criteria for de minimis changes that require the owner or operator to provide notice to the MDEQ.

¹ Definition of "Site Remediation" in 40 CFR 63.7957.

An MAQP is not required under ARM 17.8.743 for a de minimis change that meets the following criteria.

<u>ARM 17.8.745(1)(a).</u> Construction or changed conditions of operation at a facility for which a Montana air quality permit has been issued that do not increase the facility's potential to emit by more than five tons per year of any pollutant except:

The refinery's potential to emit will not increase by more than 5 tpy for any pollutant as a result of the air sampling activities. The calculated potential VOC emissions from the three-day pilot test equal 1.03 tons.

<u>ARM 17.8.745(1)(a)(i).</u> Any construction or changed conditions of operation at a facility that would violate any condition in the facility's existing Montana air quality permit or any applicable rule contained in this chapter is prohibited, except as allowed in ARM 17.8.745(2);

Calumet does not propose any construction or changed conditions of operation at the refinery that would violate any condition in the refinery's existing MAQP or any applicable rule contained in ARM, Title 17 – Environmental Quality, Chapter 8 – Air Quality.

<u>ARM 17.8.745(1)(a)(ii).</u> Any construction or changed conditions of operation at a facility that would qualify as a major modification of a major stationary source under subchapters 8 (PSD), 9 (NNSR), or 10 (new major stationary source or major modification causing or contributing to a violation of a national ambient air quality standard) of this chapter;

The planned sampling event will not be a "major modification" under subchapters 8, 9, or 10 of ARM, Title 17 – Environmental Quality, Chapter 8 – Air Quality.

<u>ARM 17.8.745(1)(a)(iii).</u> Any construction or changed conditions of operation at a facility that would affect the plume rise or dispersion characteristics of the emissions in a manner that would cause or contribute to a violation of an ambient air quality standard or an ambient air increment, as defined in ARM 17.8.804;

Calumet does not anticipate any measurable impact from the sampling event with respect to any ambient air quality standard or ambient air increment.

<u>ARM 17.8.745(1)(a)(iv).</u> Any construction or improvement project with a potential to emit more than five tons per year may not be artificially split into smaller projects to avoid permitting under this subchapter; and

Calumet is conducting this temporary sampling to gather necessary information to design an interim measure remedial technology to stabilize and reduce hydrocarbon related groundwater concentrations.

<u>ARM 17.8.745(1)(a)(v).</u> Emission reductions obtained through offsetting within a facility are not included when determining the potential emission increase from construction or changed conditions of operation, unless such reductions are made federally enforceable.

The planned sampling does not include any offsetting associated with emission reductions at the refinery.

<u>ARM 17.8.745(1)(b).</u> The owner or operator of any facility making a de minimis change pursuant to ARM 17.8.745(1)(a) shall notify the department if the change would include addition of a new emissions unit, a change in control equipment, stack height, stack diameter, stack flow, stack gas temperature, source location, or fuel specifications, or would result in an increase in source capacity above its permitted operation.

The planned sampling will temporarily release emissions to the atmosphere over a three-day period. At MDEQ's request, Calumet is submitting this de minimis change notification.

The following is a summary of the information included with the de minimis change notification.

<u>ARM 17.8.745(1)(d).</u> If notice is required under ARM 17.8.745(1)(b), the owner or operator shall submit the following information to the department in writing at least ten days prior to startup or use of the proposed de minimis change or as soon as reasonably practicable in the event of an unanticipated circumstance causing the de minimis change:

This de minimis change notification is being submitted to MDEQ prior to the sampling event that is currently planned for September 2019.

<u>ARM 17.8.745(1)(d)(i).</u> A description of the proposed de minimis change requiring notice, including the anticipated date of the change;

The proposed de minimis change is described earlier in this notification document.

<u>ARM 17.8.745(1)(d)(ii).</u> Sufficient information to calculate the potential emissions resulting from the proposed de minimis change;

The potential to emit calculations are included as Attachment 2 for MDEQ review.

<u>ARM 17.8.745(1)(d)(iii).</u> If applicable, an explanation of the unanticipated circumstance causing the change.

No explanation is required because no unanticipated circumstance is involved with the planned sampling.

Summary

Calumet prepared this de minimis notification after consulting with MDEQ staff and applicable requirements in ARM Title 17, Chapter 8, Subchapter 7, Air Quality. The planned sampling event will gather necessary information for upcoming soil remediation activities.

Closing

Please feel free to call me at 406-454-9887 if you have any questions about this de minimis change notification.

Sincerely,

Joe Dauner Environmental Manager

ENCLOSURE

Attachment 1

Pilot Test Study Area

K:/GIS/PROJECT/2018/CALUMET/DOCS/ROC16 2019/Figl_filotStudyArea.mxd

Attachment 2

Potential to Emit Calculations

Estimated Emission Rate Calculation Biosparging/Air Sparge/SVE Remediation System CMR - Great Falls, Montana

	Maximum Measured	Mavimum CVE	Ectimated Maxim	
	Vapor Concentration [–] (milligrams per cubic	Flow Rate ²	esumated Maximum Hourly Emissions ³	Estimated Dailv Emissions (tons
Individual VOC Components	meter)	(SCFM)	(pounds per hour)	per 24-hours)
Benzene	62	325	0.10	0.0012
C5-C8, Aliphatic	22,000	325	26.78	0.32
C9-C12, Aliphatic	22	325	0.03	0.00032
Cyclohexane	180	325	0.22	0.0026
Heptane	160	325	0.19	0.0023
Hexane	026	325	1.18	0.014
m,p-Xylene	18	325	0.02	0.00026
Octane	16	325	0.02	0.00023
Tetrachloroethene	0.18	325	0.00	0.000026
Toluene	62	325	0.08	0.0009
Total VOC	1	1	28.62	0.34
		Total VOC for	Test Period (3 Days) 4 =	1.03 tons

Notes:

SVP = Soil Vapor Point VOC = Volatile Organic Compound SVE = Soil Vapor Extraction SCFM = Standard Cubic Feet per Minute 1 - Maximum measured soil vapor concentration data from SVP-04 VOC (near monitoring well 41).

2 - Maximum vapor extraction rate from pilot test equipment.

3 - Hourly emissions based on maximum VOC concentration and maximum SVE extraction flow rate.

4 - Total emissions during testing based on hourly emissions, 24-hours per day, and 3 days for testing.

8/30/2019

Joe Dauner Calumet Montana Refining, LLC 1900 10th Street Northeast Great Falls, MT 59404

Sent via Electronic Mail to: joseph.dauner@calumetspecialty.com

RE: Montana Air Quality Permit (MAQP) *de minimis* Permitting Exclusion Concurrence Soil Vapor Sampling Pilot Study

Dear Mr. Dauner:

The Montana Department of Environmental Quality – Air Quality Bureau (DEQ-AQB) received from Calumet Montana Refining, LLC (Calumet) a de minimis notification regarding volatile organic compound emissions to occur as part of soil vapor sampling at three pilot test locations within the refinery. The purpose of this letter is to provide DEQ-AQB's written concurrence regarding applicability of the permitting exclusion provided by the Administrative Rules of Montana (ARM) 17.8.745 to this pilot study project.

Based on review of the project, DEQ-AQB finds that operation of this pilot project would not violate any condition in the current MAQP, would not be considered a major modification of a major stationary source, would not be expected to cause or contribute to a violation of an ambient air quality standard or increment, and would not have the potential to emit more than five tons per year. As such, this project qualifies for the permitting exclusion provided by ARM 17.8.745. Under the circumstances of needing to commence operation of a pilot study to appropriately design a soil vapor extraction system, DEQ-AQB accepts Calumet's letter received August 30, 2019 as satisfying, in full, the notification requirements of ARM 17.8.745(1)(b) and (d). DEQ–AQB confirms that the 10-day waiting period is waived to accommodate the start of the pilot testing as soon as practical.

Should you have any comments, questions, or concerns, feel free to contact me at <u>sjuers@mt.gov</u> or via phone at 406.444.2049.

Sincerely,

She G

Shawn Juers Air Quality Engineer

ec: Denise Kirkpatrick, Hazardous Waste Specialist, MT DEQ

APPENDIX F Soil Vapor Analytical Laboratory Report

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

November 06, 2019

Paul Lindquist Ramboll

,

RE: Project: 1690014124-002 CMR Pace Project No.: 10497512

Dear Paul Lindquist:

Enclosed are the analytical results for sample(s) received by the laboratory on October 30, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carolynne That

Carolynne Trout carolynne.trout@pacelabs.com 1(612)607-6351 Project Manager

Enclosures

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: 1690014124-002 CMR Pace Project No.: 10497512

Minnesota Certification IDs

1700 Elm Street SE, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #: MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Marvland Certification #: 322 Massachusetts Certification #: M-MN064 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137

Minnesota Dept of Ag Certifcation #: via MN 027-053-137 Minnesota Petrofund Certification #: 1240 Mississippi Certification #: MN00064 Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Vermont Certification #: VT-027053137 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01

SAMPLE SUMMARY

 Project:
 1690014124-002 CMR

 Pace Project No.:
 10497512

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10497512001	SVE-1 20191024	Air	10/24/19 14:35	10/30/19 10:30
10497512002	SVE-2B 20191023	Air	10/23/19 14:30	10/30/19 10:30
10497512003	UNUSED CAN #3256	Air		10/30/19 10:30
10497512004	UNUSED CAN #2085	Air		10/30/19 10:30
10497512005	UNUSED CAN #3282	Air		10/30/19 10:30
10497512006	UNUSED CAN #3123	Air		10/30/19 10:30
10497512007	UNUSED CAN #2515	Air		10/30/19 10:30
10497512008	UNUSED CAN #0905	Air		10/30/19 10:30
10497512009	UNUSED CAN #0996	Air		10/30/19 10:30

SAMPLE ANALYTE COUNT

 Project:
 1690014124-002 CMR

 Pace Project No.:
 10497512

Lab ID	Sample ID	Method	Analysts	Analytes Reported
10497512001	SVE-1 20191024	TO-15	MJL	61
10497512002	SVE-2B 20191023	TO-15	MJL	61

PROJECT NARRATIVE

Project: 1690014124-002 CMR

Pace Project No.: 10497512

Method: TO-15 Description: TO15 MSV AIR

Client:Ramboll Environ- WI AIRDate:November 06, 2019

General Information:

2 samples were analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 642772

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- LCS (Lab ID: 3461265)
 - Hexachloro-1,3-butadiene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 642772

L3: Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in

- associated samples.
 - LCS (Lab ID: 3461265)
 - Hexachloro-1,3-butadiene

Additional Comments:

Analyte Comments:

QC Batch: 642772

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- SVE-2B 20191023 (Lab ID: 10497512002)
 - Cyclohexane
 - n-Hexane

This data package has been reviewed for quality and completeness and is approved for release.

Project: 1690014124-002 CMR

Pace Project No.: 10497512

Sample: SVE-1 20191024	Lab ID: 10497512001		Collected: 10/24/	19 14:35	Received: 10/30/19 10:30	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Met	hod: TO-15					
Acetone	ND	ug/m3	25900	10752	11/04/19 19:48	3 67-64-1	
Benzene	46100	ug/m3	3490	10752	11/04/19 19:48	3 71-43-2	
Benzyl chloride	ND	ug/m3	28300	10752	11/04/19 19:48	3 100-44-7	
Bromodichloromethane	ND	ug/m3	14600	10752	11/04/19 19:48	3 75-27-4	
Bromoform	ND	ug/m3	56400	10752	11/04/19 19:48	3 75-25-2	
Bromomethane	ND	ug/m3	8480	10752	11/04/19 19:48	3 74-83-9	
1,3-Butadiene	ND	ug/m3	4840	10752	11/04/19 19:48	3 106-99-0	
2-Butanone (MEK)	ND	ug/m3	32300	10752	11/04/19 19:48	3 78-93-3	
Carbon disulfide	ND	ug/m3	6810	10752	11/04/19 19:48	3 75-15-0	
Carbon tetrachloride	ND	ug/m3	13800	10752	11/04/19 19:48	3 56-23-5	
Chlorobenzene	ND	ug/m3	10100	10752	11/04/19 19:48	3 108-90-7	
Chloroethane	ND	ug/m3	5760	10752	11/04/19 19:48	3 75-00-3	
Chloroform	ND	ug/m3	5330	10752	11/04/19 19:48	3 67-66-3	
Chloromethane	ND	ug/m3	4520	10752	11/04/19 19:48	3 74-87-3	
Cyclohexane	285000	ug/m3	18800	10752	11/04/19 19:48	3 110-82-7	
Dibromochloromethane	ND	ug/m3	18600	10752	11/04/19 19:48	3 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/m3	8400	10752	11/04/19 19:48	3 106-93-4	
1,2-Dichlorobenzene	ND	ug/m3	13100	10752	11/04/19 19:48	3 95-50-1	
1,3-Dichlorobenzene	ND	ug/m3	13100	10752	11/04/19 19:48	3 541-73-1	
1,4-Dichlorobenzene	ND	ug/m3	32900	10752	11/04/19 19:48	3 106-46-7	
Dichlorodifluoromethane	ND	ug/m3	10900	10752	11/04/19 19:48	3 75-71-8	
1,1-Dichloroethane	ND	ug/m3	8850	10752	11/04/19 19:48	3 75-34-3	
1,2-Dichloroethane	ND	ug/m3	4420	10752	11/04/19 19:48	3 107-06-2	
1,1-Dichloroethene	ND	ug/m3	8670	10752	11/04/19 19:48	3 75-35-4	
cis-1,2-Dichloroethene	ND	ug/m3	8670	10752	11/04/19 19:48	3 156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	8670	10752	11/04/19 19:48	3 156-60-5	
1,2-Dichloropropane	ND	ug/m3	10100	10752	11/04/19 19:48	3 78-87-5	
cis-1,3-Dichloropropene	ND	ug/m3	9920	10752	11/04/19 19:48	3 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/m3	9920	10752	11/04/19 19:48	3 10061-02-6	
Dichlorotetrafluoroethane	ND	ug/m3	15300	10752	11/04/19 19:48	3 76-14-2	
Ethanol	ND	ug/m3	20600	10752	11/04/19 19:48	3 64-17-5	
Ethyl acetate	ND	ug/m3	7880	10752	11/04/19 19:48	3 141-78-6	
Ethylbenzene	ND	ug/m3	9490	10752	11/04/19 19:48	3 100-41-4	
4-Ethyltoluene	ND	ug/m3	26900	10752	11/04/19 19:48	3 622-96-8	
n-Heptane	18000	ug/m3	8960	10752	11/04/19 19:48	3 142-82-5	
Hexachloro-1,3-butadiene	ND	ug/m3	58300	10752	11/04/19 19:48	3 87-68-3	
n-Hexane	434000	ug/m3	7700	10752	11/04/19 19:48	3 110-54-3	
2-Hexanone	ND	ug/m3	44700	10752	11/04/19 19:48	3 591-78-6	
Methylene Chloride	ND	ug/m3	38000	10752	11/04/19 19:48	3 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	44700	10752	11/04/19 19:48	3 108-10-1	
Methyl-tert-butyl ether	ND	ug/m3	39400	10752	11/04/19 19:48	3 1634-04-4	
Naphthalene	ND	ug/m3	28600	10752	11/04/19 19:48	3 91-20-3	
2-Propanol	ND	ug/m3	26900	10752	11/04/19 19:48	3 67-63-0	
Propylene	ND	ug/m3	3760	10752	11/04/19 19:48	3 115-07-1	
Styrene	ND	ug/m3	9310	10752	11/04/19 19:48	3 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/m3	7500	10752	11/04/19 19:48	3 79-34-5	
Tetrachloroethene	ND	ug/m3	7410	10752	11/04/19 19:48	3 127-18-4	

Project: 1690014124-002 CMR

Pace Project No.: 10497512

Sample: SVE-1 20191024	Lab ID: 10497512001		Collected: 10/24/19 14:35		Received: 1	Received: 10/30/19 10:30 Matrix: Air		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	od: TO-15						
Tetrahydrofuran	ND	ug/m3	6450	10752		11/04/19 19:48	109-99-9	
Toluene	10900	ug/m3	8240	10752		11/04/19 19:48	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	81100	10752		11/04/19 19:48	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	11900	10752		11/04/19 19:48	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	5970	10752		11/04/19 19:48	79-00-5	
Trichloroethene	ND	ug/m3	5870	10752		11/04/19 19:48	79-01-6	
Trichlorofluoromethane	ND	ug/m3	12300	10752		11/04/19 19:48	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	16800	10752		11/04/19 19:48	76-13-1	
1,2,4-Trimethylbenzene	ND	ug/m3	10700	10752		11/04/19 19:48	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	10700	10752		11/04/19 19:48	108-67-8	
Vinyl acetate	ND	ug/m3	7700	10752		11/04/19 19:48	108-05-4	
Vinyl chloride	ND	ug/m3	2800	10752		11/04/19 19:48	75-01-4	
m&p-Xylene	ND	ug/m3	19000	10752		11/04/19 19:48	179601-23-1	
o-Xylene	ND	ug/m3	9490	10752		11/04/19 19:48	95-47-6	
Sample: SVE-2B 20191023	Lab ID: 104	97512002	Collected: 10/23/	19 14:30	Received: 1	0/30/19 10:30 M	latrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	od: TO-15						
Acetope	, ND	ua/m3	27000	11210		11/04/19 20:15	67-64-1	
Renzene	191000	ug/m2	27000	11210		11/04/19 20.15	71 42 2	
Denzelle Denzyl oblarida	401000	ug/m3	3040	11210		11/04/19 20.15	11-43-2	
Benzyi chionde		ug/m3	29500	11210		11/04/19 20:15	100-44-7	
Bromotorm		ug/m2	15200 59000	11210		11/04/19 20.15	75-27-4	
Bromomothana		ug/m2	30900	11210		11/04/19 20.15	73-23-2	
		ug/m2	6650 5050	11210		11/04/19 20.15	14-03-9	
2 Putanana (MEK)		ug/m2	22600	11210		11/04/19 20.15	70 02 2	
		ug/m3	7100	11210		11/04/19 20:15	76-93-3	
Carbon totrachlorido		ug/m3	14400	11210		11/04/19 20.15	75-15-0 56 22 5	
Chlorobenzene		ug/m3	10500	11210		11/04/19 20:15	108-90-7	
Chloroothano		ug/m3	6010	11210		11/04/19 20:15	75 00 3	
Chloroform		ug/m3	5560	11210		11/04/19 20:15	67 66 3	
Chloromothano		ug/m3	4710	11210		11/04/19 20:15	7/ 97 2	
Cyclobeyane	2020000	ug/m3	4710	11210		11/04/19 20:15	14-07-3	F
Dibromochloromethane		ug/m3	19400	11210		11/04/19 20:15	124-48-1	L
1.2 Dibromoothano (EDB)		ug/m3	8760	11210		11/04/19 20:15	124-40-1	
1.2 Dichlorobonzono		ug/m3	12700	11210		11/04/19 20:15	05 50 1	
1.2 Dichlorobonzono		ug/m3	13700	11210		11/04/19 20:15	5/1 72 1	
1 4-Dichlorobenzene		ug/m3	3/00	11210		11/04/10 20:15	106-46-7	
Dichlorodifluoromethane		ug/113	11200	11210		11/04/19 20:15	75-71-8	
1 1-Dichloroethane		ug/m3	0220	11210		11/04/10 20.15	75-34-3	
1.2-Dichloroethane		ug/m3	JE10	11210		11/04/10 20.15	107-06-2	
1 1-Dichloroethere		ug/m3	4010	11210		11/04/10 20.15	75-35-4	
cis-1 2-Dichloroethene		ug/m3	9040 9040	11210		11/04/19 20:15	156-59-2	
trans-1.2-Dichloroethene	ND	ug/m3	9040	11210		11/04/19 20:15	156-60-5	
		~	0040					

Project: 1690014124-002 CMR

Pace Project No.: 10497512

Sample: SVE-2B 20191023	Lab ID: 1049	Lab ID: 10497512002		Collected: 10/23/19 14:30		Received: 10/30/19 10:30 Matrix: Air		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	od: TO-15						
1,2-Dichloropropane	ND	ug/m3	10500	11210		11/04/19 20:15	78-87-5	
cis-1,3-Dichloropropene	ND	ug/m3	10300	11210		11/04/19 20:15	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/m3	10300	11210		11/04/19 20:15	10061-02-6	
Dichlorotetrafluoroethane	ND	ug/m3	15900	11210		11/04/19 20:15	76-14-2	
Ethanol	ND	ug/m3	21500	11210		11/04/19 20:15	64-17-5	
Ethyl acetate	ND	ug/m3	8220	11210		11/04/19 20:15	141-78-6	
Ethylbenzene	ND	ug/m3	9900	11210		11/04/19 20:15	100-41-4	
4-Ethyltoluene	ND	ug/m3	28000	11210		11/04/19 20:15	622-96-8	
n-Heptane	195000	ug/m3	9340	11210		11/04/19 20:15	142-82-5	
Hexachloro-1,3-butadiene	ND	ug/m3	60800	11210		11/04/19 20:15	87-68-3	
n-Hexane	4120000	ug/m3	8030	11210		11/04/19 20:15	110-54-3	E
2-Hexanone	ND	ug/m3	46600	11210		11/04/19 20:15	591-78-6	
Methylene Chloride	ND	ug/m3	39600	11210		11/04/19 20:15	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/m3	46600	11210		11/04/19 20:15	108-10-1	
Methyl-tert-butyl ether	ND	ug/m3	41000	11210		11/04/19 20:15	1634-04-4	
Naphthalene	ND	ug/m3	29800	11210		11/04/19 20:15	91-20-3	
2-Propanol	ND	ug/m3	28000	11210		11/04/19 20:15	67-63-0	
Propylene	ND	ug/m3	3920	11210		11/04/19 20:15	115-07-1	
Styrene	ND	ug/m3	9710	11210		11/04/19 20:15	100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/m3	7830	11210		11/04/19 20:15	79-34-5	
Tetrachloroethene	ND	ug/m3	7730	11210		11/04/19 20:15	127-18-4	
Tetrahydrofuran	ND	ug/m3	6730	11210		11/04/19 20:15	109-99-9	
Toluene	23400	ug/m3	8590	11210		11/04/19 20:15	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	84500	11210		11/04/19 20:15	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	12400	11210		11/04/19 20:15	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	6220	11210		11/04/19 20:15	79-00-5	
Trichloroethene	ND	ug/m3	6120	11210		11/04/19 20:15	79-01-6	
Trichlorofluoromethane	ND	ug/m3	12800	11210		11/04/19 20:15	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	17500	11210		11/04/19 20:15	76-13-1	
1,2,4-Trimethylbenzene	ND	ug/m3	11200	11210		11/04/19 20:15	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	11200	11210		11/04/19 20:15	108-67-8	
Vinyl acetate	ND	ug/m3	8030	11210		11/04/19 20:15	108-05-4	
Vinyl chloride	ND	ug/m3	2920	11210		11/04/19 20:15	75-01-4	
m&p-Xylene	ND	ug/m3	19800	11210		11/04/19 20:15	179601-23-1	
o-Xylene	ND	ug/m3	9900	11210		11/04/19 20:15	95-47-6	

QUALITY CONTROL DATA

Project: 1690014124-002 CMR

Pace Project No.: 10497512

......

QC Batch: 642772 QC Batch Method: TO-15 Analysis Method: Analysis Description:

Matrix: Air

iption: TO15 MSV AIR Low Level

TO-15

Associated Lab Samples: 10497512001, 10497512002

METHOD BLANK: 3461264

Associated Lab Samples: 10497512001, 10497512002

Associated Lab Samples. 10497	512001, 10497512002	Diants	Denertine		
Doromotor	11-14-	Blank	Reporting	Analyzed	Quellfor
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	0.56	11/04/19 09:09	
1,1,2,2-Tetrachloroethane	ug/m3	ND	0.35	11/04/19 09:09	
1,1,2-Trichloroethane	ug/m3	ND	0.28	11/04/19 09:09	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	0.78	11/04/19 09:09	
1,1-Dichloroethane	ug/m3	ND	0.41	11/04/19 09:09	
1,1-Dichloroethene	ug/m3	ND	0.40	11/04/19 09:09	
1,2,4-Trichlorobenzene	ug/m3	ND	3.8	11/04/19 09:09	
1,2,4-Trimethylbenzene	ug/m3	ND	0.50	11/04/19 09:09	
1,2-Dibromoethane (EDB)	ug/m3	ND	0.39	11/04/19 09:09	
1,2-Dichlorobenzene	ug/m3	ND	0.61	11/04/19 09:09	
1,2-Dichloroethane	ug/m3	ND	0.21	11/04/19 09:09	
1,2-Dichloropropane	ug/m3	ND	0.47	11/04/19 09:09	
1,3,5-Trimethylbenzene	ug/m3	ND	0.50	11/04/19 09:09	
1,3-Butadiene	ug/m3	ND	0.22	11/04/19 09:09	
1,3-Dichlorobenzene	ug/m3	ND	0.61	11/04/19 09:09	
1,4-Dichlorobenzene	ug/m3	ND	1.5	11/04/19 09:09	
2-Butanone (MEK)	ug/m3	ND	1.5	11/04/19 09:09	
2-Hexanone	ug/m3	ND	2.1	11/04/19 09:09	
2-Propanol	ug/m3	ND	1.2	11/04/19 09:09	
4-Ethyltoluene	ug/m3	ND	1.2	11/04/19 09:09	
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	2.1	11/04/19 09:09	
Acetone	ug/m3	ND	1.2	11/04/19 09:09	
Benzene	ug/m3	ND	0.16	11/04/19 09:09	
Benzyl chloride	ug/m3	ND	1.3	11/04/19 09:09	
Bromodichloromethane	ug/m3	ND	0.68	11/04/19 09:09	
Bromoform	ug/m3	ND	2.6	11/04/19 09:09	
Bromomethane	ug/m3	ND	0.39	11/04/19 09:09	
Carbon disulfide	ug/m3	ND	0.32	11/04/19 09:09	
Carbon tetrachloride	ug/m3	ND	0.64	11/04/19 09:09	
Chlorobenzene	ug/m3	ND	0.47	11/04/19 09:09	
Chloroethane	ug/m3	ND	0.27	11/04/19 09:09	
Chloroform	ug/m3	ND	0.25	11/04/19 09:09	
Chloromethane	ug/m3	ND	0.21	11/04/19 09:09	
cis-1,2-Dichloroethene	ug/m3	ND	0.40	11/04/19 09:09	
cis-1,3-Dichloropropene	ug/m3	ND	0.46	11/04/19 09:09	
Cyclohexane	ug/m3	ND	0.88	11/04/19 09:09	
Dibromochloromethane	ug/m3	ND	0.86	11/04/19 09:09	
Dichlorodifluoromethane	ug/m3	ND	0.50	11/04/19 09:09	
Dichlorotetrafluoroethane	ug/m3	ND	0.71	11/04/19 09:09	
Ethanol	ug/m3	ND	0.96	11/04/19 09:09	
Ethyl acetate	ug/m3	ND	0.37	11/04/19 09:09	
,					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: 1690014124-002 CMR

Pace Project No.: 10497512

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Ethylbenzene ug/m3 ND 0.44 11/04/19 09:09 Qualifiers Maxachloro-1,3-butadiene ug/m3 ND 2.7 11/04/19 09:09 Qualifiers Methyl-tert-butyl ether ug/m3 ND 0.88 11/04/19 09:09 Qualifiers Methyl-tert-butyl ether ug/m3 ND 0.88 11/04/19 09:09 Qualifiers -Heptane ug/m3 ND 1.8 11/04/19 09:09 Qualifiers n-Heptane ug/m3 ND 0.42 11/04/19 09:09 Qualifiers Naphthalene ug/m3 ND 0.42 11/04/19 09:09 Qualifiers Styrene ug/m3 ND 0.44 11/04/19 09:09 Qualifiers Styrene ug/m3 ND 0.44 11/04/19 09:09 Qualifiers Styrene ug/m3 ND 0.44 11/04/19 09:09 Qualifiers Styrene ug/m3	METHOD BLANK: 346126	4	Matrix:	Air		
Parameter Units Blank Result Reporting Limit Analyzed Qualifiers Ethylbenzene ug/m3 ND 0.44 11/04/19 09:09 Qualifiers Hexachloro-1,3-butadiene ug/m3 ND 2.7 11/04/19 09:09 Methyl-199 Methyl-tert-butyl ether ug/m3 ND 0.88 11/04/19 09:09 Methyl-199 Methyl-tert-butyl ether ug/m3 ND 1.8 11/04/19 09:09 1.8 n-Heptane ug/m3 ND 0.42 11/04/19 09:09 1.4 n-Hexane ug/m3 ND 0.36 11/04/19 09:09 1.4 Naphthalene ug/m3 ND 1.3 11/04/19 09:09 1.4 Propylene ug/m3 ND 0.44 11/04/19 09:09 1.4 Styrene ug/m3 ND 0.43 11/04/19 09:09 1.4 Tetrachloroethene ug/m3 ND 0.34 11/04/19 09:09 1.4 Tetrachloroethene ug/m3 ND 0.33 11/04/19 09:09	Associated Lab Samples:	10497512001, 10497512002				
Parameter Units Result Limit Analyzed Qualifiers Ethylbenzene ug/m3 ND 0.44 11/04/19 09:09 Hexachloro-1,3-butadiene ug/m3 ND 0.7 11/04/19 09:09 m&p-Xylene ug/m3 ND 0.88 11/04/19 09:09 Methyl-tert-butyl ether ug/m3 ND 1.8 11/04/19 09:09 n-Heptane ug/m3 ND 0.42 11/04/19 09:09 n-Hexane ug/m3 ND 0.42 11/04/19 09:09 Naphthalene ug/m3 ND 0.42 11/04/19 09:09 Propylene ug/m3 ND 0.44 11/04/19 09:09 Propylene ug/m3 ND 0.18 11/04/19 09:09 Styrene ug/m3 ND 0.43 11/04/19 09:09 Tetrachloroethene ug/m3 ND			Blank	Reporting		
Ethylbenzene ug/m3 ND 0.44 11/04/19 09:09 Hexachloro-1,3-butadiene ug/m3 ND 2.7 11/04/19 09:09 m&p-Xylene ug/m3 ND 0.88 11/04/19 09:09 Methyl-tert-butyl ether ug/m3 ND 1.8 11/04/19 09:09 Methylene Chloride ug/m3 ND 1.8 11/04/19 09:09 n-Heptane ug/m3 ND 0.42 11/04/19 09:09 n-Heptane ug/m3 ND 0.42 11/04/19 09:09 Naphthalene ug/m3 ND 0.36 11/04/19 09:09 >-Xylene ug/m3 ND 0.44 11/04/19 09:09 >-Xylene ug/m3 ND 0.44 11/04/19 09:09 Propylene ug/m3 ND 0.43 11/04/19 09:09 Styrene ug/m3 ND 0.34 11/04/19 09:09 Tetrachloroethene ug/m3 ND 0.30 11/04/19 09:09 Tetrashydrofuran ug/m3 ND 0.38 11/04/19 09:09	Parameter	Units	Result	Limit	Analyzed	Qualifiers
Hexachloro-1,3-butadieneug/m3ND2.711/04/19 09:09m&p-Xyleneug/m3ND0.8811/04/19 09:09Methyl-tert-butyl etherug/m3ND1.811/04/19 09:09Methylene Chlorideug/m3ND0.4211/04/19 09:09n-Heptaneug/m3ND0.3611/04/19 09:09n-Hexaneug/m3ND0.3611/04/19 09:09Naphthaleneug/m3ND1.311/04/19 09:09o-Xyleneug/m3ND0.4411/04/19 09:09o-Xyleneug/m3ND0.4311/04/19 09:09Propyleneug/m3ND0.4311/04/19 09:09Styreneug/m3ND0.3411/04/19 09:09Tetrachloroetheneug/m3ND0.3411/04/19 09:09Tetrashloroetheneug/m3ND0.3811/04/19 09:09Trans-1,2-Dichloroetheneug/m3ND0.4011/04/19 09:09Trichloroetheneug/m3ND0.4011/04/19 09:09Trichloroetheneug/m3ND0.4611/04/19 09:09Trichloroetheneug/m3ND0.4611/04/19 09:09Trichloroetheneug/m3ND0.5711/04/19 09:09Trichloroetheneug/m3ND0.5711/04/19 09:09Trichloroetheneug/m3ND0.3611/04/19 09:09Trichloroetheneug/m3ND0.5711/04/19 09:09Vinyl acetateug/m3ND0.3611/04/19 09:09 </td <td>Ethylbenzene</td> <td> ug/m3</td> <td>ND</td> <td>0.44</td> <td>11/04/19 09:09</td> <td></td>	Ethylbenzene	ug/m3	ND	0.44	11/04/19 09:09	
m&p-Xyleneug/m3ND0.8811/04/19 09:09Methyl-tert-butyl etherug/m3ND1.811/04/19 09:09Methylene Chlorideug/m3ND1.811/04/19 09:09n-Heptaneug/m3ND0.4211/04/19 09:09n-Hexaneug/m3ND0.3611/04/19 09:09Naphthaleneug/m3ND1.311/04/19 09:09o-Xyleneug/m3ND0.4411/04/19 09:09Propyleneug/m3ND0.4311/04/19 09:09Styreneug/m3ND0.4311/04/19 09:09Tetrachloroetheneug/m3ND0.3411/04/19 09:09Tolueneug/m3ND0.3011/04/19 09:09trans-1,2-Dichloroetheneug/m3ND0.3811/04/19 09:09trans-1,3-Dichloropropeneug/m3ND0.4611/04/19 09:09Trichloroetheneug/m3ND0.2711/04/19 09:09Trichloroetheneug/m3ND0.5711/04/19 09:09Trichlorofluoromethaneug/m3ND0.5711/04/19 09:09Vinyl acetateug/m3ND0.3611/04/19 09:09Vinyl chlorideug/m3ND0.3611/04/19 09:09	Hexachloro-1,3-butadiene	ug/m3	ND	2.7	11/04/19 09:09	
Methyl-tert-butyl etherug/m3ND1.811/04/19 09:09Methylene Chlorideug/m3ND1.811/04/19 09:09n-Heptaneug/m3ND0.4211/04/19 09:09n-Hexaneug/m3ND0.3611/04/19 09:09Naphthaleneug/m3ND1.311/04/19 09:09o-Xyleneug/m3ND0.4411/04/19 09:09Propyleneug/m3ND0.4411/04/19 09:09Styreneug/m3ND0.1811/04/19 09:09Tetrachloroetheneug/m3ND0.4311/04/19 09:09Tetrashydrofuranug/m3ND0.3411/04/19 09:09Tolueneug/m3ND0.3011/04/19 09:09trans-1,2-Dichloroetheneug/m3ND0.4611/04/19 09:09trans-1,3-Dichloropropeneug/m3ND0.4611/04/19 09:09Trichloroetheneug/m3ND0.4611/04/19 09:09Trichlorofluoromethaneug/m3ND0.4611/04/19 09:09Vinyl acetateug/m3ND0.5711/04/19 09:09Vinyl chlorideug/m3ND0.3611/04/19 09:09	m&p-Xylene	ug/m3	ND	0.88	11/04/19 09:09	
Methylene Chlorideug/m3ND1.811/04/19 09:09n-Heptaneug/m3ND0.4211/04/19 09:09n-Hexaneug/m3ND0.3611/04/19 09:09Naphthaleneug/m3ND1.311/04/19 09:09o-Xyleneug/m3ND0.4411/04/19 09:09o-Xyleneug/m3ND0.4311/04/19 09:09Propyleneug/m3ND0.4311/04/19 09:09Styreneug/m3ND0.4311/04/19 09:09Tetrachloroetheneug/m3ND0.3411/04/19 09:09Tolueneug/m3ND0.3811/04/19 09:09Tolueneug/m3ND0.4011/04/19 09:09trans-1,2-Dichloroetheneug/m3ND0.4611/04/19 09:09trans-1,3-Dichloropropeneug/m3ND0.4611/04/19 09:09Trichlorofluoromethaneug/m3ND0.5711/04/19 09:09Vinyl acetateug/m3ND0.5711/04/19 09:09Vinyl chlorideug/m3ND0.3611/04/19 09:09	Methyl-tert-butyl ether	ug/m3	ND	1.8	11/04/19 09:09	
h-Heptaneug/m3ND0.4211/04/19 09:09h-Hexaneug/m3ND0.3611/04/19 09:09Naphthaleneug/m3ND1.311/04/19 09:09b-Xyleneug/m3ND0.4411/04/19 09:09Propyleneug/m3ND0.1811/04/19 09:09Styreneug/m3ND0.4311/04/19 09:09Tetrachloroetheneug/m3ND0.3411/04/19 09:09Tetrachloroetheneug/m3ND0.3411/04/19 09:09Tolueneug/m3ND0.3811/04/19 09:09trans-1,2-Dichloroetheneug/m3ND0.4011/04/19 09:09trans-1,3-Dichloropropeneug/m3ND0.4611/04/19 09:09Trichloroetheneug/m3ND0.4611/04/19 09:09Trichlorofluoromethaneug/m3ND0.5711/04/19 09:09Vinyl acetateug/m3ND0.5611/04/19 09:09Vinyl chlorideug/m3ND0.3611/04/19 09:09	Methylene Chloride	ug/m3	ND	1.8	11/04/19 09:09	
h-Hexaneug/m3ND0.3611/04/19 09:09Naphthaleneug/m3ND1.311/04/19 09:09o-Xyleneug/m3ND0.4411/04/19 09:09Propyleneug/m3ND0.1811/04/19 09:09Styreneug/m3ND0.4311/04/19 09:09Tetrachloroetheneug/m3ND0.3411/04/19 09:09Tetrachloroetheneug/m3ND0.3411/04/19 09:09Tolueneug/m3ND0.3811/04/19 09:09trans-1,2-Dichloroetheneug/m3ND0.4311/04/19 09:09trans-1,3-Dichloropropeneug/m3ND0.4611/04/19 09:09Trichloroetheneug/m3ND0.4611/04/19 09:09Trichlorofluoromethaneug/m3ND0.5711/04/19 09:09Vinyl acetateug/m3ND0.3611/04/19 09:09Vinyl chlorideug/m3ND0.3611/04/19 09:09	n-Heptane	ug/m3	ND	0.42	11/04/19 09:09	
Naphthalene ug/m3 ND 1.3 11/04/19 09:09 o-Xylene ug/m3 ND 0.44 11/04/19 09:09 Propylene ug/m3 ND 0.18 11/04/19 09:09 Styrene ug/m3 ND 0.43 11/04/19 09:09 Tetrachloroethene ug/m3 ND 0.34 11/04/19 09:09 Tetrachloroethene ug/m3 ND 0.34 11/04/19 09:09 Tetrachloroethene ug/m3 ND 0.34 11/04/19 09:09 Toluene ug/m3 ND 0.30 11/04/19 09:09 trans-1,2-Dichloroethene ug/m3 ND 0.40 11/04/19 09:09 trans-1,3-Dichloropropene ug/m3 ND 0.40 11/04/19 09:09 trans-1,3-Dichloropropene ug/m3 ND 0.46 11/04/19 09:09 Trichlorofluoromethane ug/m3 ND 0.57 11/04/19 09:09 Vinyl acetate ug/m3 ND 0.57 11/04/19 09:09 Vinyl chloride ug/m3 ND 0.36<	n-Hexane	ug/m3	ND	0.36	11/04/19 09:09	
b-Xylene ug/m3 ND 0.44 11/04/19 09:09 Propylene ug/m3 ND 0.18 11/04/19 09:09 Styrene ug/m3 ND 0.43 11/04/19 09:09 Tetrachloroethene ug/m3 ND 0.34 11/04/19 09:09 Tetrachloroethene ug/m3 ND 0.34 11/04/19 09:09 Tetrachloroethene ug/m3 ND 0.30 11/04/19 09:09 Toluene ug/m3 ND 0.38 11/04/19 09:09 trans-1,2-Dichloroethene ug/m3 ND 0.40 11/04/19 09:09 trans-1,3-Dichloropropene ug/m3 ND 0.46 11/04/19 09:09 trans-1,3-Dichloropropene ug/m3 ND 0.27 11/04/19 09:09 Trichlorofluoromethane ug/m3 ND 0.57 11/04/19 09:09 Vinyl acetate ug/m3 ND 0.36 11/04/19 09:09 Vinyl chloride ug/m3 ND 0.36 11/04/19 09:09	Naphthalene	ug/m3	ND	1.3	11/04/19 09:09	
Propylene ug/m3 ND 0.18 11/04/19 09:09 Styrene ug/m3 ND 0.43 11/04/19 09:09 Tetrachloroethene ug/m3 ND 0.34 11/04/19 09:09 Tetrachloroethene ug/m3 ND 0.30 11/04/19 09:09 Tetrahydrofuran ug/m3 ND 0.30 11/04/19 09:09 Toluene ug/m3 ND 0.38 11/04/19 09:09 trans-1,2-Dichloroethene ug/m3 ND 0.40 11/04/19 09:09 trans-1,3-Dichloropropene ug/m3 ND 0.46 11/04/19 09:09 Trichloroethene ug/m3 ND 0.27 11/04/19 09:09 Trichlorofluoromethane ug/m3 ND 0.57 11/04/19 09:09 Vinyl acetate ug/m3 ND 0.36 11/04/19 09:09 Vinyl chloride ug/m3 ND 0.36 11/04/19 09:09	o-Xylene	ug/m3	ND	0.44	11/04/19 09:09	
Styrene ug/m3 ND 0.43 11/04/19 09:09 Tetrachloroethene ug/m3 ND 0.34 11/04/19 09:09 Tetrachloroethene ug/m3 ND 0.30 11/04/19 09:09 Tetrahydrofuran ug/m3 ND 0.30 11/04/19 09:09 Toluene ug/m3 ND 0.38 11/04/19 09:09 trans-1,2-Dichloroethene ug/m3 ND 0.40 11/04/19 09:09 trans-1,3-Dichloroptopene ug/m3 ND 0.46 11/04/19 09:09 Trichloroethene ug/m3 ND 0.27 11/04/19 09:09 Trichlorofluoromethane ug/m3 ND 0.57 11/04/19 09:09 Vinyl acetate ug/m3 ND 0.36 11/04/19 09:09 Vinyl chloride ug/m3 ND 0.36 11/04/19 09:09	Propylene	ug/m3	ND	0.18	11/04/19 09:09	
Tetrachloroetheneug/m3ND0.3411/04/19 09:09Tetrahydrofuranug/m3ND0.3011/04/19 09:09Tolueneug/m3ND0.3811/04/19 09:09trans-1,2-Dichloroetheneug/m3ND0.4011/04/19 09:09trans-1,3-Dichloropropeneug/m3ND0.4611/04/19 09:09Trichloroetheneug/m3ND0.2711/04/19 09:09Trichloroetheneug/m3ND0.5711/04/19 09:09Vinyl acetateug/m3ND0.3611/04/19 09:09Vinyl chlorideug/m3ND0.3111/04/19 09:09	Styrene	ug/m3	ND	0.43	11/04/19 09:09	
Tetrahydrofuran ug/m3 ND 0.30 11/04/19 09:09 Toluene ug/m3 ND 0.38 11/04/19 09:09 trans-1,2-Dichloroethene ug/m3 ND 0.40 11/04/19 09:09 trans-1,3-Dichloropropene ug/m3 ND 0.46 11/04/19 09:09 Trichloroethene ug/m3 ND 0.46 11/04/19 09:09 Trichloroethene ug/m3 ND 0.27 11/04/19 09:09 Trichlorofluoromethane ug/m3 ND 0.57 11/04/19 09:09 Vinyl acetate ug/m3 ND 0.36 11/04/19 09:09 Vinyl chloride ug/m3 ND 0.36 11/04/19 09:09	Tetrachloroethene	ug/m3	ND	0.34	11/04/19 09:09	
Toluene ug/m3 ND 0.38 11/04/19 09:09 trans-1,2-Dichloroethene ug/m3 ND 0.40 11/04/19 09:09 trans-1,3-Dichloropropene ug/m3 ND 0.46 11/04/19 09:09 Trichloroethene ug/m3 ND 0.46 11/04/19 09:09 Trichloroethene ug/m3 ND 0.27 11/04/19 09:09 Trichlorofluoromethane ug/m3 ND 0.57 11/04/19 09:09 Vinyl acetate ug/m3 ND 0.36 11/04/19 09:09 Vinyl chloride ug/m3 ND 0.13 11/04/19 09:09	Tetrahydrofuran	ug/m3	ND	0.30	11/04/19 09:09	
trans-1,2-Dichloroetheneug/m3ND0.4011/04/19 09:09trans-1,3-Dichloropropeneug/m3ND0.4611/04/19 09:09Trichloroetheneug/m3ND0.2711/04/19 09:09Trichlorofluoromethaneug/m3ND0.5711/04/19 09:09Vinyl acetateug/m3ND0.3611/04/19 09:09Vinyl chlorideug/m3ND0.1311/04/19 09:09	Toluene	ug/m3	ND	0.38	11/04/19 09:09	
trans-1,3-Dichloropropeneug/m3ND0.4611/04/19 09:09Trichloroetheneug/m3ND0.2711/04/19 09:09Trichlorofluoromethaneug/m3ND0.5711/04/19 09:09Vinyl acetateug/m3ND0.3611/04/19 09:09Vinyl chlorideug/m3ND0.1311/04/19 09:09	trans-1,2-Dichloroethene	ug/m3	ND	0.40	11/04/19 09:09	
Trichloroethene ug/m3 ND 0.27 11/04/19 09:09 Trichlorofluoromethane ug/m3 ND 0.57 11/04/19 09:09 Vinyl acetate ug/m3 ND 0.36 11/04/19 09:09 Vinyl chloride ug/m3 ND 0.36 11/04/19 09:09	trans-1,3-Dichloropropene	ug/m3	ND	0.46	11/04/19 09:09	
Trichlorofluoromethane ug/m3 ND 0.57 11/04/19 09:09 Vinyl acetate ug/m3 ND 0.36 11/04/19 09:09 Vinyl chloride ug/m3 ND 0.13 11/04/19 09:09	Trichloroethene	ug/m3	ND	0.27	11/04/19 09:09	
Vinyl acetate ug/m3 ND 0.36 11/04/19 09:09 Vinyl chloride ug/m3 ND 0.13 11/04/19 09:09	Trichlorofluoromethane	ug/m3	ND	0.57	11/04/19 09:09	
Vinyl chloride ug/m3 ND 0.13 11/04/19 09:09	Vinyl acetate	ug/m3	ND	0.36	11/04/19 09:09	
	Vinyl chloride	ug/m3	ND	0.13	11/04/19 09:09	

LABORATORY CONTROL SAMPLE: 3461265

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1 1 1-Trichloroethane	u		60.9	110	70-130	
1 1 2 2-Tetrachloroethane	ug/m3	69.8	70.3	101	70-132	
1 1 2-Trichloroethane	ug/m3	55.5	60.3	109	70-130	
1,1,2-Trichlorotrifluoroethane	ug/m3	77.9	91.0	117	70-130	
1.1-Dichloroethane	ug/m3	41.1	41.5	101	70-130	
1.1-Dichloroethene	ug/m3	40.3	46.2	115	70-130	
1.2.4-Trichlorobenzene	ug/m3	75.4	87.9	116	56-130	
1.2.4-Trimethylbenzene	ug/m3	50	57.5	115	70-134	
1.2-Dibromoethane (EDB)	ua/m3	78.1	87.2	112	70-130	
1,2-Dichlorobenzene	ug/m3	61.1	72.5	119	70-132	
1,2-Dichloroethane	ug/m3	41.1	44.4	108	70-130	
1,2-Dichloropropane	ug/m3	47	49.2	105	70-130	
1,3,5-Trimethylbenzene	ug/m3	50	58.4	117	70-132	
1,3-Butadiene	ug/m3	22.5	27.1	121	65-130	
1,3-Dichlorobenzene	ug/m3	61.1	73.2	120	70-137	
1,4-Dichlorobenzene	ug/m3	61.1	73.0	120	70-134	
2-Butanone (MEK)	ug/m3	30	32.2	107	70-130	
2-Hexanone	ug/m3	41.6	38.9	93	70-135	
2-Propanol	ug/m3	125	135	108	68-130	
4-Ethyltoluene	ug/m3	50	57.0	114	70-138	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: 1690014124-002 CMR

Pace Project No.: 10497512

LABORATORY CONTROL SAMPLE:	3461265					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
4-Methyl-2-pentanone (MIBK)	ug/m3	41.6	40.1	96	70-131	
Acetone	ug/m3	121	129	107	67-130	
Benzene	ug/m3	32.5	33.0	102	70-130	
Benzyl chloride	ug/m3	52.6	52.6	100	70-130	
Bromodichloromethane	ug/m3	68.1	72.2	106	70-130	
Bromoform	ug/m3	105	122	116	70-132	
Bromomethane	ug/m3	39.5	47.7	121	69-130	
Carbon disulfide	ug/m3	31.6	35.3	112	56-137	
Carbon tetrachloride	ug/m3	64	68.5	107	66-131	
Chlorobenzene	ug/m3	46.8	52.1	111	70-130	
Chloroethane	ug/m3	26.8	33.2	124	70-130	
Chloroform	ug/m3	49.6	50.8	102	70-130	
Chloromethane	ug/m3	21	23.2	111	66-130	
cis-1,2-Dichloroethene	ug/m3	40.3	45.9	114	70-130	
cis-1,3-Dichloropropene	ug/m3	46.1	48.8	106	70-133	
Cyclohexane	ug/m3	35	36.3	104	68-132	
Dibromochloromethane	ug/m3	86.6	101	117	70-130	
Dichlorodifluoromethane	ug/m3	50.3	52.7	105	70-130	
Dichlorotetrafluoroethane	ug/m3	71	79.3	112	70-130	
Ethanol	ug/m3	95.8	103	108	68-133	
Ethyl acetate	ug/m3	36.6	35.9	98	69-130	
Ethylbenzene	ug/m3	44.1	48.5	110	67-131	
Hexachloro-1,3-butadiene	ug/m3	108	150	138	66-137	CH,L3
m&p-Xylene	ug/m3	88.3	99.2	112	70-132	
Methyl-tert-butyl ether	ug/m3	36.6	43.4	118	70-130	
Methylene Chloride	ug/m3	177	173	98	65-130	
n-Heptane	ug/m3	41.7	42.3	102	65-130	
n-Hexane	ug/m3	35.8	34.1	95	66-130	
Naphthalene	ug/m3	53.3	49.6	93	56-130	
o-Xylene	ug/m3	44.1	49.9	113	70-130	
Propylene	ug/m3	17.5	17.3	99	67-130	
Styrene	ug/m3	43.3	48.5	112	69-136	
Tetrachloroethene	ug/m3	68.9	87.0	126	70-130	
Tetrahydrofuran	ug/m3	30	30.7	102	68-131	
Toluene	ug/m3	38.3	41.6	109	70-130	
trans-1,2-Dichloroethene	ug/m3	40.3	46.0	114	70-130	
trans-1,3-Dichloropropene	ug/m3	46.1	48.0	104	70-134	
Trichloroethene	ug/m3	54.6	66.5	122	70-130	
Trichlorofluoromethane	ug/m3	57.1	65.0	114	65-130	
Vinyl acetate	ug/m3	35.8	39.6	111	61-133	
Vinyl chloride	ug/m3	26	31.7	122	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 1690014124-002 CMR

Pace Project No.: 10497512

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Metho
Project: Pace Project No.:	1690014124-002 CMR 10497512			

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch	
10497512001	SVE-1 20191024		642772			
10497512002	SVE-2B 20191023	TO-15	642772			

and the second sec

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Air Technical Phone: 612.607.6386

FC046Rev.01, 03Feb2010

	Pace Analyti	cal*	<u>Air S</u>	Document Nar ample Condition U Document No E-MN-0-105-rec	me: Ipon Receir o.: v 19	it	Docume is Race Mi	Document Revised: 14Oct2019 Page 1 of 1 Issuing Authority: Page Minnesote Quality Office			
Air Sample Condition Upon Receipt Courier:	Client Nan CMI	ne: 2/RAME	BOU	Pr	oject #:	MO	#:104	1975	12	/19	
Tracking Number:	Pace 1002	SpeeDee 3 0261	۵۵۲ Con 5948	nmercial See Ex	ception	CLIEN.	T: Rambol	L-WI			
Custody Seal on Cool	er/Box Preser	nt? []Yes	j⊠No ™ata	Seals Intact	? []Ye)				
Temp. (TO17 and TO13 s	Bubble wrap	c): X	Corrected To	emp (°C):	⊧ ∐Tin X	Can [_]Ot	her: Thermo	Tem meter Used:	G87A91	Yes N 70600254	
Temp should be above f	reezing to 6°C	Correction Fa	ctor:	x	Da	te & Initials o	of Person Examin	ing Contents:		0/19 C	
Type of ice Received [Blue W	et 🕅 None									
				f u. r				Comments:		·····	
Chain of Custody Present	Lr 		<u> </u>	Yes No		1.	· .				
Chain of Custody Pilled O	isbed?		<u>کلر</u> کر		- a	2.					
Sampler Name and/or Si	gnature on COC	 ??				з. Л					
Samples Arrived within H	Iold Time?		<u>مر</u>	IYes □No	/^	5					
Short Hold Time Analysis	s (<72 hr)?		_	Yes XINo		6.					
Rush Turn Around Time	Requested?			Yes XNo		7.					
Sufficient Volume?		5.	×	Yes 🔲 No		8.					
Correct Containers Used?	9	κ.	Ξ.	Yes 🔲 No		9.					
-Pace Containers Used	?			Yes 🗌 No							
Containers Intact?			×	Yes 🔲 No		10.					
Media: Air Can	Airbag	Filter	TDT	Passive		11. lr	ndividually Certi	fied Cans Y	🕑 list whi	ch samples)	
Is sufficient information a the COC?	vailable to reco	oncile samples t	to V Z 1	Ves 🗖 No		17					
Do cans need to be press	urized? (DO N	ОТ	<u>~</u>						<u></u>		
PRESSURIZE 3C or A	STM 1946!	!!)	ĹX	Yes 🔲 No		13.					
· · · · · · · · · · · · · · · · · · ·		Gauge # D	10AIR26	[] 10AIR34	L 10		74097				
· · · · · · · · · · · · · · · · · · ·	Can	isters	<u></u>					nistors		· · · · · · · · · · · · · · · · · · ·	
Sample Number	Can ID	Flow Controller	Initial Pressure	Final Pressure	10/30 Samp	le Number	Can ID	Flow Controller	Initial Pressure	Final Pressure	
SVE-1	2546	1287	-6	hw.		t	0 9 -				
545-65	200	1304	+		<u>۷</u>		0496	1300	~29.5	** 	
h	7000	1242	-01.5				·	<u> </u>			
h	77.97	1377	- 2a								
11	3123	1499	-30								
N	2515	1305	-29,5							·	
N	0905	1331	-78	· · · · · ·							
		<u> </u>	· · · · · · · · · · · · · · · · · · ·		L				····	L	
CLIENT NOTHCATION/	KESULUTION				D-+		Field Dat	a Required?	∐Yes ∐N	ю	
Comments/Pee	olution				_ Date/	e:		· · · · · · · · · · · · · · · · · · ·			
Commentary (CS		<u> </u>									
				••••••••••••••••••••••••••••••••••••••			··· •· • • • • • • • • • • • • • • • •				

Project Manager Review: Cause from the form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Client: Ramboll Env Phone: 414-837-364	iron- WI AIR 5					Lab Project N	Number:	10497512	24-002 CMR
Lab Sample No: 10	0/07512001			DroiSomploNum	104075	12001	Doto	Colloctod	10/24/10 14:25
Client Sample ID:	SVE-1 2019	1024		Matrix:	Air	12001	Date	Received:	10/30/19 10:30
Parameters		Results	Units	Report Limit	DF	Analyzed		CAS No.	Qualifiers
Air TO-15									
1,1,1-Trichloroethane		ND	ppmv	2.1	10752	11/04/19 19:48	MJL	71-55-6	
1,1,2,2-Tetrachloroetl	nane	ND	ppmv	1.1	10752	11/04/19 19:48	MJL	79-34-5	
1,1,2-Trichloroethane		ND	ppmv	1.1	10752	11/04/19 19:48	MJL	79-00-5	
1,1,2-Trichlorotrifluoro	bethane	ND	ppmv	2.2	10752	11/04/19 19:48	MJL	76-13-1	
1,1-Dichloroethane		ND	ppmv	2.2	10752	11/04/19 19:48	MJL	75-34-3	
1,1-Dichloroethene		ND	ppmv	2.2	10752	11/04/19 19:48	MJL	75-35-4	
1,2,4-Trichlorobenzer	ne	ND	ppmv	10.8	10752	11/04/19 19:48	MJL	120-82-1	
1,2,4-Trimethylbenze	ne	ND	ppmv	2.1	10752	11/04/19 19:48	MJL	95-63-6	
1,2-Dibromoethane (E	EDB)	ND	ppmv	1.1	10752	11/04/19 19:48	MJL	106-93-4	
1,2-Dichlorobenzene		ND	ppmv	2.1	10752	11/04/19 19:48	MJL	95-50-1	
1,2-Dichloroethane		ND	ppmv	1.1	10752	11/04/19 19:48	MJL	107-06-2	
1,2-Dichloropropane		ND	ppmv	2.2	10752	11/04/19 19:48	MJL	78-87-5	
1,3,5-Trimethylbenze	ne	ND	ppmv	2.1	10752	11/04/19 19:48	MJL	108-67-8	
1,3-Butadiene		ND	ppmv	2.2	10752	11/04/19 19:48	MJL	106-99-0	
1,3-Dichlorobenzene		ND	ppmv	2.1	10752	11/04/19 19:48	MJL	541-73-1	
1,4-Dichlorobenzene		ND	ppmv	5.4	10752	11/04/19 19:48	MJL	106-46-7	
2-Butanone (MEK)		ND	ppmv	10.8	10752	11/04/19 19:48	MJL	78-93-3	
2-Hexanone		ND	ppmv	10.7	10752	11/04/19 19:48	MJL	591-78-6	
2-Propanol		ND	ppmv	10.8	10752	11/04/19 19:48	MJL	67-63-0	
4-Ethyltoluene		ND	ppmv	5.4	10752	11/04/19 19:48	MJL	622-96-8	
4-Methyl-2-pentanone	e (MIBK)	ND	ppmv	10.7	10752	11/04/19 19:48	MJL	108-10-1	
Acetone		ND	ppmv	10.7	10752	11/04/19 19:48	MJL	67-64-1	
Benzene		14.2	ppmv	1.1	10752	11/04/19 19:48	MJL	71-43-2	
Benzyl chloride		ND	ppmv	5.4	10752	11/04/19 19:48	MJL	100-44-7	
Bromodichloromethar	ne	ND	ppmv	2.1	10752	11/04/19 19:48	MJL	75-27-4	
Bromoform		ND	ppmv	5.4	10752	11/04/19 19:48	MJL	75-25-2	
Bromomethane		ND	ppmv	2.1	10752	11/04/19 19:48	MJL	74-83-9	
Carbon disulfide		ND	ppmv	2.2	10752	11/04/19 19:48	MJL	75-15-0	
Carbon tetrachloride		ND	ppmv	2.2	10752	11/04/19 19:48	MJL	56-23-5	
Chlorobenzene		ND	ppmv	2.2	10752	11/04/19 19:48	MJL	108-90-7	
Chloroethane		ND	ppmv	2.1	10752	11/04/19 19:48	MJL	75-00-3	
Chloroform		ND	ppmv	1.1	10752	11/04/19 19:48	MJL	67-66-3	
Chloromethane		ND	ppmv	2.2	10752	11/04/19 19:48	MJL	74-87-3	
cis-1,2-Dichloroethen	е	ND	ppmv	2.2	10752	11/04/19 19:48	MJL	156-59-2	
cis-1,3-Dichloroprope	ne	ND	ppmv	2.2	10752	11/04/19 19:48	MJL	10061-01-	5
Cyclohexane		81.5	ppmv	5.4	10752	11/04/19 19:48	MJL	110-82-7	
Dibromochlorometha	ne	ND	ppmv	2.1	10752	11/04/19 19:48	MJL	124-48-1	
Dichlorodifluorometha	ane	ND	ppmv	2.2	10752	11/04/19 19:48	MJL	75-71-8	

SUPPLEMENTAL REPORT

Date: 11/6/2019

Units Conversion Request

Client: Ramboll Environ- WI A	IR				Lab Project N Project	lumber t Name	: 10497512 · 1690014124	-002 CMR
Leb Semple No: 1040751200	1	D,	oiSomoloNum	104075	12001	Dot	- Collected: 1	0/24/10 14:25
Client Sample ID:	0101024	FI	ojsampienum.	104975	12001	Dat	e Collected.	0/24/19 14.33
Client Sample ID. SVE-12	20191024		watrix.	All		Dai	e Received.	0/30/19 10.30
Parameters	Results	Units	Report Limit	DF	Analyzed		CAS No.	Qualifiers
Air								
Dichlorotetrafluoroethane	ND	ppmv	2.2	10752	11/04/19 19:48	MJL	76-14-2	
Ethanol	ND	ppmv	10.8	10752	11/04/19 19:48	MJL	64-17-5	
Ethyl acetate	ND	ppmv	2.2	10752	11/04/19 19:48	MJL	141-78-6	
Ethylbenzene	ND	ppmv	2.1	10752	11/04/19 19:48	MJL	100-41-4	
Hexachloro-1,3-butadiene	ND	ppmv	5.4	10752	11/04/19 19:48	MJL	87-68-3	
m&p-Xylene	ND	ppmv	4.3	10752	11/04/19 19:48	MJL	179601-23-1	
Methylene Chloride	ND	ppmv	10.8	10752	11/04/19 19:48	MJL	75-09-2	
Methyl-tert-butyl ether	ND	ppmv	10.8	10752	11/04/19 19:48	MJL	1634-04-4	
Naphthalene	ND	ppmv	5.4	10752	11/04/19 19:48	MJL	91-20-3	
n-Heptane	4.3	ppmv	2.2	10752	11/04/19 19:48	MJL	142-82-5	
n-Hexane	121	ppmv	2.1	10752	11/04/19 19:48	MJL	110-54-3	
o-Xylene	ND	ppmv	2.1	10752	11/04/19 19:48	MJL	95-47-6	
Propylene	ND	ppmv	2.1	10752	11/04/19 19:48	MJL	115-07-1	
Styrene	ND	ppmv	2.2	10752	11/04/19 19:48	MJL	100-42-5	
Tetrachloroethene	ND	ppmv	1.1	10752	11/04/19 19:48	MJL	127-18-4	
Tetrahydrofuran	ND	ppmv	2.2	10752	11/04/19 19:48	MJL	109-99-9	
Toluene	2.8	ppmv	2.2	10752	11/04/19 19:48	MJL	108-88-3	
trans-1,2-Dichloroethene	ND	ppmv	2.2	10752	11/04/19 19:48	MJL	156-60-5	
trans-1,3-Dichloropropene	ND	ppmv	2.2	10752	11/04/19 19:48	MJL	10061-02-6	
Trichloroethene	ND	ppmv	1.1	10752	11/04/19 19:48	MJL	79-01-6	
Trichlorofluoromethane	ND	ppmv	2.2	10752	11/04/19 19:48	MJL	75-69-4	
Vinyl acetate	ND	ppmv	2.2	10752	11/04/19 19:48	MJL	108-05-4	
Vinyl chloride	ND	ppmv	1.1	10752	11/04/19 19:48	MJL	75-01-4	

DISCLAIMER: These results have been converted to the units shown from the original units of measurement assuming 20 degrees Celsius and 1 atmosphere pressure. Values were not rounded according to EPA rounding rules. THC is quantitated based on the average response factors of several compounds; the nominal molecular weight of THC used for units conversion is the average of the molecular weights of the compounds used for quantitation.

SUPPLEMENTAL REPORT Units Conversion Request

Client: Phone:	Ramboll Environ- WI 414-837-3645	AIR				Lab Project N Projec	Number: t Name:	10497512 169001412	4-002 CMR
Lab Sam	ple No: 10497512	002	Pr	oiSampleNum:	104975	12002	Date	Collected:	10/23/19 14:30
Client Sa	mple ID: SVE-2	2B 20191023		Matrix:	Air		Date	Received:	10/30/19 10:30
Paramete	ers	Results	Units	Report Limit	DF	Analyzed		CAS No.	Qualifiers
Air TO-15									
1,1,1-	Trichloroethane	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	71-55-6	
1,1,2,	2-Tetrachloroethane	ND	ppmv	1.1	11210	11/04/19 20:15	MJL	79-34-5	
1,1,2-	Trichloroethane	ND	ppmv	1.1	11210	11/04/19 20:15	MJL	79-00-5	
1,1,2-	Trichlorotrifluoroethane	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	76-13-1	
1,1-D	ichloroethane	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	75-34-3	
1,1-D	ichloroethene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	75-35-4	
1,2,4-	Trichlorobenzene	ND	ppmv	11.2	11210	11/04/19 20:15	MJL	120-82-1	
1,2,4-	Trimethylbenzene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	95-63-6	
1,2-D	ibromoethane (EDB)	ND	ppmv	1.1	11210	11/04/19 20:15	MJL	106-93-4	
1,2-D	ichlorobenzene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	95-50-1	
1,2-D	ichloroethane	ND	ppmv	1.1	11210	11/04/19 20:15	MJL	107-06-2	
1,2-D	ichloropropane	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	78-87-5	
1,3,5-	Trimethylbenzene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	108-67-8	
1,3-B	utadiene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	106-99-0	
1,3-D	ichlorobenzene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	541-73-1	
1,4-D	ichlorobenzene	ND	ppmv	5.6	11210	11/04/19 20:15	MJL	106-46-7	
2-But	anone (MEK)	ND	ppmv	11.2	11210	11/04/19 20:15	MJL	78-93-3	
2-Hex	anone	ND	ppmv	11.2	11210	11/04/19 20:15	MJL	591-78-6	
2-Pro	panol	ND	ppmv	11.2	11210	11/04/19 20:15	MJL	67-63-0	
4-Eth	yltoluene	ND	ppmv	5.6	11210	11/04/19 20:15	MJL	622-96-8	
4-Met	hyl-2-pentanone (MIBK)	ND	ppmv	11.2	11210	11/04/19 20:15	MJL	108-10-1	
Aceto	ne	ND	ppmv	11.2	11210	11/04/19 20:15	MJL	67-64-1	
Benze	ene	148	ppmv	1.1	11210	11/04/19 20:15	MJL	71-43-2	
Benzy	/l chloride	ND	ppmv	5.6	11210	11/04/19 20:15	MJL	100-44-7	
Brom	odichloromethane	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	75-27-4	
Brom	oform	ND	ppmv	5.6	11210	11/04/19 20:15	MJL	75-25-2	
Brom	omethane	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	74-83-9	
Carbo	on disulfide	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	75-15-0	
Carbo	on tetrachloride	ND	ppmv	2.3	11210	11/04/19 20:15	MJL	56-23-5	
Chlor	obenzene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	108-90-7	
Chlor	oethane	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	75-00-3	
Chlor	oform	ND	ppmv	1.1	11210	11/04/19 20:15	MJL	67-66-3	
Chlor	omethane	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	74-87-3	
cis-1,	2-Dichloroethene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	156-59-2	
cis-1.	3-Dichloropropene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	10061-01-5	5
Cyclo	hexane	835	ppmv	5.6	11210	11/04/19 20:15	MJL	110-82-7	Е
Dibro	mochloromethane	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	124-48-1	
Dichlo	prodifluoromethane	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	75-71-8	

SUPPLEMENTAL REPORT

Date: 11/6/2019

Units Conversion Request

Client: Ramboll Environ- WI A	IR				Lab Project N Projec	Number	: 10497512 · 1690014124-	002 CMR
Lab Cample No: 1040751200	22	Π.		104075	10000	Det		002 0001
Client Comple INC. 1049751200	00404000	PI		104975	12002	Dat	e Collected: 10	/23/19 14:30
Client Sample ID. SVE-26	20191023		watrix.	All		Dai	e Received. To	/30/19 10:30
Parameters	Results	Units	Report Limit	DF	Analyzed		CAS No.	Qualifiers
Air								
Dichlorotetrafluoroethane	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	76-14-2	
Ethanol	ND	ppmv	11.2	11210	11/04/19 20:15	MJL	64-17-5	
Ethyl acetate	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	141-78-6	
Ethylbenzene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	100-41-4	
Hexachloro-1,3-butadiene	ND	ppmv	5.6	11210	11/04/19 20:15	MJL	87-68-3	
m&p-Xylene	ND	ppmv	4.5	11210	11/04/19 20:15	MJL	179601-23-1	
Methylene Chloride	ND	ppmv	11.2	11210	11/04/19 20:15	MJL	75-09-2	
Methyl-tert-butyl ether	ND	ppmv	11.2	11210	11/04/19 20:15	MJL	1634-04-4	
Naphthalene	ND	ppmv	5.6	11210	11/04/19 20:15	MJL	91-20-3	
n-Heptane	46.8	ppmv	2.2	11210	11/04/19 20:15	MJL	142-82-5	
n-Hexane	1150	ppmv	2.2	11210	11/04/19 20:15	MJL	110-54-3	E
o-Xylene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	95-47-6	
Propylene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	115-07-1	
Styrene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	100-42-5	
Tetrachloroethene	ND	ppmv	1.1	11210	11/04/19 20:15	MJL	127-18-4	
Tetrahydrofuran	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	109-99-9	
Toluene	6.1	ppmv	2.2	11210	11/04/19 20:15	MJL	108-88-3	
trans-1,2-Dichloroethene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	156-60-5	
trans-1,3-Dichloropropene	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	10061-02-6	
Trichloroethene	ND	ppmv	1.1	11210	11/04/19 20:15	MJL	79-01-6	
Trichlorofluoromethane	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	75-69-4	
Vinyl acetate	ND	ppmv	2.2	11210	11/04/19 20:15	MJL	108-05-4	
Vinyl chloride	ND	ppmv	1.1	11210	11/04/19 20:15	MJL	75-01-4	

DISCLAIMER: These results have been converted to the units shown from the original units of measurement assuming 20 degrees Celsius and 1 atmosphere pressure. Values were not rounded according to EPA rounding rules. THC is quantitated based on the average response factors of several compounds; the nominal molecular weight of THC used for units conversion is the average of the molecular weights of the compounds used for quantitation.

Pace Analytical Services, LLC 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

ANALYTICAL RESULTS

Client: Ramboll Environ- WI AIR

Phone: 414-837-3645 Lab Project Number: 10497512 Project Name: 1690014124-002 CMR

PARAMETER FOOTNOTES

ND Not detected at or above adjusted reporting limit

NC Not Calculable

- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- [E] Analyte concentration exceeded the calibration range. The reported result is estimated.

Client: Ramboll Environ- WI Phone: 414-837-3645	AIR				Lab Project N Projec	Number: t Name:	10497512 16900141	24-002 CMR
Lab Sample No: 10497512	001	Pro	niSampleNum.	104975	12001	Date	Collected	10/24/19 14:35
Client Sample ID: SVE-1	1 20191024		Matrix:	Air	12001	Date	Received:	10/30/19 10:30
Parameters	Results	Units	Report Limit	DF	Analyzed		CAS No.	Qualifiers
Air TO-15								
1,1,1-Trichloroethane	ND	mg/m3	11.9	10752	11/04/19 19:48	MJL	71-55-6	
1,1,2,2-Tetrachloroethane	ND	mg/m3	7.5	10752	11/04/19 19:48	MJL	79-34-5	
1,1,2-Trichloroethane	ND	mg/m3	6	10752	11/04/19 19:48	MJL	79-00-5	
1,1,2-Trichlorotrifluoroethane	ND	mg/m3	16.8	10752	11/04/19 19:48	MJL	76-13-1	
1,1-Dichloroethane	ND	mg/m3	8.8	10752	11/04/19 19:48	MJL	75-34-3	
1,1-Dichloroethene	ND	mg/m3	8.7	10752	11/04/19 19:48	MJL	75-35-4	
1,2,4-Trichlorobenzene	ND	mg/m3	81.1	10752	11/04/19 19:48	MJL	120-82-1	
1,2,4-Trimethylbenzene	ND	mg/m3	10.7	10752	11/04/19 19:48	MJL	95-63-6	
1,2-Dibromoethane (EDB)	ND	mg/m3	8.4	10752	11/04/19 19:48	MJL	106-93-4	
1,2-Dichlorobenzene	ND	mg/m3	13.1	10752	11/04/19 19:48	MJL	95-50-1	
1,2-Dichloroethane	ND	mg/m3	4.4	10752	11/04/19 19:48	MJL	107-06-2	
1,2-Dichloropropane	ND	mg/m3	10.1	10752	11/04/19 19:48	MJL	78-87-5	
1,3,5-Trimethylbenzene	ND	mg/m3	10.7	10752	11/04/19 19:48	MJL	108-67-8	
1,3-Butadiene	ND	mg/m3	4.8	10752	11/04/19 19:48	MJL	106-99-0	
1,3-Dichlorobenzene	ND	mg/m3	13.1	10752	11/04/19 19:48	MJL	541-73-1	
1,4-Dichlorobenzene	ND	mg/m3	32.9	10752	11/04/19 19:48	MJL	106-46-7	
2-Butanone (MEK)	ND	mg/m3	32.3	10752	11/04/19 19:48	MJL	78-93-3	
2-Hexanone	ND	mg/m3	44.7	10752	11/04/19 19:48	MJL	591-78-6	
2-Propanol	ND	mg/m3	26.9	10752	11/04/19 19:48	MJL	67-63-0	
4-Ethyltoluene	ND	mg/m3	26.9	10752	11/04/19 19:48	MJL	622-96-8	
4-Methyl-2-pentanone (MIBK)	ND	mg/m3	44.7	10752	11/04/19 19:48	MJL	108-10-1	
Acetone	ND	mg/m3	25.9	10752	11/04/19 19:48	MJL	67-64-1	
Benzene	46.1	mg/m3	3.5	10752	11/04/19 19:48	MJL	71-43-2	
Benzvl chloride	ND	ma/m3	28.3	10752	11/04/19 19:48	MJL	100-44-7	
Bromodichloromethane	ND	mg/m3	14.6	10752	11/04/19 19:48	MJL	75-27-4	
Bromoform	ND	mg/m3	56.4	10752	11/04/19 19:48	MJL	75-25-2	
Bromomethane	ND	mg/m3	8.5	10752	11/04/19 19:48	MJL	74-83-9	
Carbon disulfide	ND	mg/m3	6.8	10752	11/04/19 19:48	MJL	75-15-0	
Carbon tetrachloride	ND	mg/m3	13.8	10752	11/04/19 19:48	MJL	56-23-5	
Chlorobenzene	ND	mg/m3	10.1	10752	11/04/19 19:48	MJL	108-90-7	
Chloroethane	ND	mg/m3	5.8	10752	11/04/19 19:48	MJL	75-00-3	
Chloroform	ND	mg/m3	5.3	10752	11/04/19 19:48	MJL	67-66-3	
Chloromethane	ND	mg/m3	4.5	10752	11/04/19 19:48	MJL	74-87-3	
cis-1,2-Dichloroethene	ND	mg/m3	8.7	10752	11/04/19 19:48	MJL	156-59-2	
cis-1,3-Dichloropropene	ND	mg/m3	9.9	10752	11/04/19 19:48	MJL	10061-01-	5
Cyclohexane	285	mg/m3	18.8	10752	11/04/19 19:48	MJL	110-82-7	
- Dibromochloromethane	ND	mg/m3	18.6	10752	11/04/19 19:48	MJL	124-48-1	
Dichlorodifluoromethane	ND	- mg/m3	10.9	10752	11/04/19 19:48	MJL	75-71-8	

SUPPLEMENTAL REPORT

Date: 11/6/2019

Units Conversion Request

Client: Ramboll Environ- WI A	IR				Lab Project N Project	lumber t Name	: 10497512 · 1690014124	-002 CMR
Leb Semple No: 1040751200	1	Dr	SomoloNum	104075	12001	Dot	• Collected: 1	0/24/10 14:25
Client Sample ID:	0101024	PIC		104975	12001	Dat	e Collected: 1	0/24/19 14:35
Client Sample ID: SVE-12	20191024		Matrix:	AIr		Dat	e Received: 1	0/30/19 10:30
Parameters	Results	Units	Report Limit	DF	Analyzed		CAS No.	Qualifiers
Air								
Dichlorotetrafluoroethane	ND	mg/m3	15.3	10752	11/04/19 19:48	MJL	76-14-2	
Ethanol	ND	mg/m3	20.6	10752	11/04/19 19:48	MJL	64-17-5	
Ethyl acetate	ND	mg/m3	7.9	10752	11/04/19 19:48	MJL	141-78-6	
Ethylbenzene	ND	mg/m3	9.5	10752	11/04/19 19:48	MJL	100-41-4	
Hexachloro-1,3-butadiene	ND	mg/m3	58.3	10752	11/04/19 19:48	MJL	87-68-3	
m&p-Xylene	ND	mg/m3	19	10752	11/04/19 19:48	MJL	179601-23-1	
Methylene Chloride	ND	mg/m3	38	10752	11/04/19 19:48	MJL	75-09-2	
Methyl-tert-butyl ether	ND	mg/m3	39.4	10752	11/04/19 19:48	MJL	1634-04-4	
Naphthalene	ND	mg/m3	28.6	10752	11/04/19 19:48	MJL	91-20-3	
n-Heptane	18	mg/m3	9	10752	11/04/19 19:48	MJL	142-82-5	
n-Hexane	434	mg/m3	7.7	10752	11/04/19 19:48	MJL	110-54-3	
o-Xylene	ND	mg/m3	9.5	10752	11/04/19 19:48	MJL	95-47-6	
Propylene	ND	mg/m3	3.8	10752	11/04/19 19:48	MJL	115-07-1	
Styrene	ND	mg/m3	9.3	10752	11/04/19 19:48	MJL	100-42-5	
Tetrachloroethene	ND	mg/m3	7.4	10752	11/04/19 19:48	MJL	127-18-4	
Tetrahydrofuran	ND	mg/m3	6.4	10752	11/04/19 19:48	MJL	109-99-9	
Toluene	10.9	mg/m3	8.2	10752	11/04/19 19:48	MJL	108-88-3	
trans-1,2-Dichloroethene	ND	mg/m3	8.7	10752	11/04/19 19:48	MJL	156-60-5	
trans-1,3-Dichloropropene	ND	mg/m3	9.9	10752	11/04/19 19:48	MJL	10061-02-6	
Trichloroethene	ND	mg/m3	5.9	10752	11/04/19 19:48	MJL	79-01-6	
Trichlorofluoromethane	ND	mg/m3	12.3	10752	11/04/19 19:48	MJL	75-69-4	
Vinyl acetate	ND	mg/m3	7.7	10752	11/04/19 19:48	MJL	108-05-4	
Vinyl chloride	ND	mg/m3	2.8	10752	11/04/19 19:48	MJL	75-01-4	

DISCLAIMER: These results have been converted to the units shown from the original units of measurement assuming 20 degrees Celsius and 1 atmosphere pressure. Values were not rounded according to EPA rounding rules. THC is quantitated based on the average response factors of several compounds; the nominal molecular weight of THC used for units conversion is the average of the molecular weights of the compounds used for quantitation.

SUPPLEMENTAL REPORT Units Conversion Request

Date: 11/6/2019

Client: Ramboll Environ- WI All Phone: 414-837-3645	R				Lab Project N Projec	Number: t Name:	10497512 169001412	24-002 CMR
Lab Sample No: 1049751200	2	Pro	niSampleNum:	104075	12002	Date		10/23/19 14.30
Client Sample ID: SVE-2B	20191023		Matrix:	Air	12002	Date	Received:	10/30/19 10:30
Parameters	Results	Units	Report Limit	DF	Analyzed		CAS No.	Qualifiers
Air TO-15								
1,1,1-Trichloroethane	ND	mg/m3	12.4	11210	11/04/19 20:15	MJL	71-55-6	
1,1,2,2-Tetrachloroethane	ND	mg/m3	7.8	11210	11/04/19 20:15	MJL	79-34-5	
1,1,2-Trichloroethane	ND	mg/m3	6.2	11210	11/04/19 20:15	MJL	79-00-5	
1,1,2-Trichlorotrifluoroethane	ND	mg/m3	17.5	11210	11/04/19 20:15	MJL	76-13-1	
1,1-Dichloroethane	ND	mg/m3	9.2	11210	11/04/19 20:15	MJL	75-34-3	
1,1-Dichloroethene	ND	mg/m3	9	11210	11/04/19 20:15	MJL	75-35-4	
1,2,4-Trichlorobenzene	ND	mg/m3	84.5	11210	11/04/19 20:15	MJL	120-82-1	
1,2,4-Trimethylbenzene	ND	mg/m3	11.2	11210	11/04/19 20:15	MJL	95-63-6	
1,2-Dibromoethane (EDB)	ND	mg/m3	8.8	11210	11/04/19 20:15	MJL	106-93-4	
1,2-Dichlorobenzene	ND	mg/m3	13.7	11210	11/04/19 20:15	MJL	95-50-1	
1,2-Dichloroethane	ND	mg/m3	4.6	11210	11/04/19 20:15	MJL	107-06-2	
1,2-Dichloropropane	ND	mg/m3	10.5	11210	11/04/19 20:15	MJL	78-87-5	
1,3,5-Trimethylbenzene	ND	mg/m3	11.2	11210	11/04/19 20:15	MJL	108-67-8	
1,3-Butadiene	ND	mg/m3	5	11210	11/04/19 20:15	MJL	106-99-0	
1,3-Dichlorobenzene	ND	mg/m3	13.7	11210	11/04/19 20:15	MJL	541-73-1	
1,4-Dichlorobenzene	ND	mg/m3	34.3	11210	11/04/19 20:15	MJL	106-46-7	
2-Butanone (MEK)	ND	mg/m3	33.6	11210	11/04/19 20:15	MJL	78-93-3	
2-Hexanone	ND	mg/m3	46.6	11210	11/04/19 20:15	MJL	591-78-6	
2-Propanol	ND	mg/m3	28	11210	11/04/19 20:15	MJL	67-63-0	
4-Ethyltoluene	ND	mg/m3	28	11210	11/04/19 20:15	MJL	622-96-8	
4-Methyl-2-pentanone (MIBK)	ND	mg/m3	46.6	11210	11/04/19 20:15	MJL	108-10-1	
Acetone	ND	mg/m3	27	11210	11/04/19 20:15	MJL	67-64-1	
Benzene	481	mg/m3	3.6	11210	11/04/19 20:15	MJL	71-43-2	
Benzyl chloride	ND	mg/m3	29.5	11210	11/04/19 20:15	MJL	100-44-7	
Bromodichloromethane	ND	mg/m3	15.2	11210	11/04/19 20:15	MJL	75-27-4	
Bromoform	ND	mg/m3	58.9	11210	11/04/19 20:15	MJL	75-25-2	
Bromomethane	ND	mg/m3	8.8	11210	11/04/19 20:15	MJL	74-83-9	
Carbon disulfide	ND	mg/m3	7.1	11210	11/04/19 20:15	MJL	75-15-0	
Carbon tetrachloride	ND	mg/m3	14.4	11210	11/04/19 20:15	MJL	56-23-5	
Chlorobenzene	ND	mg/m3	10.5	11210	11/04/19 20:15	MJL	108-90-7	
Chloroethane	ND	mg/m3	6	11210	11/04/19 20:15	MJL	75-00-3	
Chloroform	ND	mg/m3	5.6	11210	11/04/19 20:15	MJL	67-66-3	
Chloromethane	ND	mg/m3	4.7	11210	11/04/19 20:15	MJL	74-87-3	
cis-1,2-Dichloroethene	ND	mg/m3	9	11210	11/04/19 20:15	MJL	156-59-2	
cis-1,3-Dichloropropene	ND	mg/m3	10.3	11210	11/04/19 20:15	MJL	10061-01-	5
Cyclohexane	2920	mg/m3	19.6	11210	11/04/19 20:15	MJL	110-82-7	E
Dibromochloromethane	ND	mg/m3	19.4	11210	11/04/19 20:15	MJL	124-48-1	
Dichlorodifluoromethane	ND	mg/m3	11.3	11210	11/04/19 20:15	MJL	75-71-8	

SUPPLEMENTAL REPORT

Date: 11/6/2019

Units Conversion Request

Client: Ramboll Environ- WI A Phone: 414-837-3645	IR				Lab Project N Projec	lumber t Name	: 10497512 : 1690014124-	002 CMR
Lab Sample No: 1049751200)2	Pro	ojSampleNum:	104975	12002	Dat	e Collected: 10)/23/19 14:30
Client Sample ID: SVE-2B	20191023		Matrix:	Air		Dat	e Received: 10)/30/19 10:30
Parameters	Results	Units	Report Limit	DF	Analyzed		CAS No.	Qualifiers
Air								
Dichlorotetrafluoroethane	ND	mg/m3	15.9	11210	11/04/19 20:15	MJL	76-14-2	
Ethanol	ND	mg/m3	21.5	11210	11/04/19 20:15	MJL	64-17-5	
Ethyl acetate	ND	mg/m3	8.2	11210	11/04/19 20:15	MJL	141-78-6	
Ethylbenzene	ND	mg/m3	9.9	11210	11/04/19 20:15	MJL	100-41-4	
Hexachloro-1,3-butadiene	ND	mg/m3	60.8	11210	11/04/19 20:15	MJL	87-68-3	
m&p-Xylene	ND	mg/m3	19.8	11210	11/04/19 20:15	MJL	179601-23-1	
Methylene Chloride	ND	mg/m3	39.6	11210	11/04/19 20:15	MJL	75-09-2	
Methyl-tert-butyl ether	ND	mg/m3	41	11210	11/04/19 20:15	MJL	1634-04-4	
Naphthalene	ND	mg/m3	29.8	11210	11/04/19 20:15	MJL	91-20-3	
n-Heptane	195	mg/m3	9.3	11210	11/04/19 20:15	MJL	142-82-5	
n-Hexane	4120	mg/m3	8	11210	11/04/19 20:15	MJL	110-54-3	E
o-Xylene	ND	mg/m3	9.9	11210	11/04/19 20:15	MJL	95-47-6	
Propylene	ND	mg/m3	3.9	11210	11/04/19 20:15	MJL	115-07-1	
Styrene	ND	mg/m3	9.7	11210	11/04/19 20:15	MJL	100-42-5	
Tetrachloroethene	ND	mg/m3	7.7	11210	11/04/19 20:15	MJL	127-18-4	
Tetrahydrofuran	ND	mg/m3	6.7	11210	11/04/19 20:15	MJL	109-99-9	
Toluene	23.4	mg/m3	8.6	11210	11/04/19 20:15	MJL	108-88-3	
trans-1,2-Dichloroethene	ND	mg/m3	9	11210	11/04/19 20:15	MJL	156-60-5	
trans-1,3-Dichloropropene	ND	mg/m3	10.3	11210	11/04/19 20:15	MJL	10061-02-6	
Trichloroethene	ND	mg/m3	6.1	11210	11/04/19 20:15	MJL	79-01-6	
Trichlorofluoromethane	ND	mg/m3	12.8	11210	11/04/19 20:15	MJL	75-69-4	
Vinyl acetate	ND	mg/m3	8	11210	11/04/19 20:15	MJL	108-05-4	
Vinyl chloride	ND	mg/m3	2.9	11210	11/04/19 20:15	MJL	75-01-4	

DISCLAIMER: These results have been converted to the units shown from the original units of measurement assuming 20 degrees Celsius and 1 atmosphere pressure. Values were not rounded according to EPA rounding rules. THC is quantitated based on the average response factors of several compounds; the nominal molecular weight of THC used for units conversion is the average of the molecular weights of the compounds used for quantitation.

Pace Analytical Services, LLC 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

ANALYTICAL RESULTS

Client: Ramboll Environ- WI AIR

Phone: 414-837-3645 Lab Project Number: 10497512 Project Name: 1690014124-002 CMR

PARAMETER FOOTNOTES

ND Not detected at or above adjusted reporting limit

NC Not Calculable

- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- [E] Analyte concentration exceeded the calibration range. The reported result is estimated.

APPENDIX G Updated AOC-16 Interim Measure Remedial Options Cost Estimate

Appendix G Alternative 1 - DPE Cost Analysis MW-22 PRT AREA CMR Great Falls, Montana

SUMMARY OF ALTERNATIVE 1: DPE

SUMMART OF ALTERNATIVE 1: DPE	Units	Otv		Unit Cost	Total Cost
CAPTIAL COSTS - DPE					
DPE Well Drilling					
Private Utility Locate	ea	1	\$	2,000	\$ 2,000
Mobilization/demobilization	IS	11	\$	10,000	\$ 10,000
Per Diem drill crew	ea	10	⊅ ⊄	800	\$ 1,100 \$ 8,000
Set-up/cleanup/decon - sonic drill rig	hr	10	\$	700	\$ 7,000
Drill & sample 8.25-inch	ft	165	\$	70	\$ 11,550
Borehole sealing and patch	ft	165	\$	20	\$ 3,300
4-inch schedule 40 PVC well construction	ft	165	\$	50	\$ 8,250
12-inch flush grade completion	ea	11	\$	700	\$ 7,700
Well development (1 hour per installation)	hr	11	\$	400	\$ 4,400 ¢ 4,500
Subtotal	uay	9	≯	500	<u>\$</u> 4,500 \$67,800
					÷,
DPE Equipment and Materials				10.000	
Remediation Building (Procurement, Fabrication, and Retrofitting	ls	1	\$	48,000	\$ 48,000
DPE Vacuum Pump and Components (PLC, K/O Tank) Miss Ruilding Components (Lighting, besters, Jouwers)	IS	1	\$	150,000	\$ 150,000 ¢ 7,000
	ls	1	₽ ¢	21 000	\$ 7,000 \$ 21,000
LNAPL Tank (Double Wall)	ls	1	₽ \$	3,000	\$ 3.000
Thermal Oxidizer	ls	1	\$	335,000	\$ 335,000
Shipping	ls	1	\$	40,000	\$ 40,000
Conveyance piping (3-inch, HPDE)	ft	1500	\$	4	\$ 6,000
Subtotal					\$ 610,000
DPF Installation and Startun					
Mobilization/demobilization	ls	1	\$	20.000	\$ 20.000
Trenching	BCY	300	\$	30	\$ 9,000
Sand Backfill around Pipe	LCY	100	\$	68	\$ 6,800
Backfill of Excavated Soil	LCY	250	\$	20	\$ 5,000
Gas Line	ls	1	\$	10,000	\$ 10,000
Electric Service Installation	ls	1	\$	50,000	\$ 50,000
Creation of Remediation Building Pad (Includes Material)	SY	50	\$	100	\$ 5,000
Effluent Water Samples (SVOCs, VOCs, and Metals)	LF	150	⊅ ⊄	40 300	\$ 0,000 ¢ 1,200
Vanor Samples (TO-15)	sample	12	ф \$	400	\$ 1,200
Subtotal	Sumple	16	Ψ	100	\$ 117,800
DPE Waste Management	03	34	¢	125	¢ 4.250
Development water	eu	34	₽ \$	-	\$ -
Subtotal					\$ 4,250
Other Capital Costs	1-		-	200.000	± 200.000
Air Treatment During 20 Day Start Up	IS	1	\$	200,000	\$ 200,000 ¢ 40,000
Permitting (Air Local County)	ls lc	1	⊅ ⊄	40,000	\$ 40,000 \$ 60,000
Surveyor	ls	1	\$	5,000	\$ 5,000
Subtotal			7	-,	\$ 305,000
Construction Oversight					\$ 104,000
TOTAL CAPITAL COSTS - DPE					\$ 1,208,850
ANNUAL O&M COSTS - DPF					
DPE Operations, Maintenance, and Monitoring		200	+	70.00	+ 11.000.00
Ramboll UM&M Labor	hr	200	\$	70.00	\$ 14,000.00 \$ 12,000.00
Oil and Filler Cildilyes Miscellaneous equipment rental and renair (includes material)	each	4	⊅ ⊄	3,000.00	₽ 12,000.00 € 14,000,00
Monthly Vapor Samples (TO-15)	samnle	12	₽ \$	400.00	\$ 4 800 00
Quarterly Effluent water Samples (SVOCs, VOCs, and Metals)	sample	8	\$	300.00	\$ 2,400.00
Quarterly GW Samples (SVOCs, VOCs, Metals, MNA)	sample	8	\$	500.00	\$ 4,000.00
Subtotal	_				\$ 51,200.00
NPF Annual IItilities					
Electric	kwh	400.000	\$	0.10	\$ 40,000.00
Natural Gas	1000 cu ft	500	\$	6.20	\$ 3,100.00
Subtotal					\$ 43,100.00
Annual OM&M Total - DPE					\$

Appendix G Alternative 1 - AS/SVE within Engineered Trench Cost Analysis MW-22 PRT AREA CMR Great Falls, Montana

SUMMARY OF ALTERNATIVE 1: AS/S	SVE within E	Engineered 1	French
--------------------------------	--------------	--------------	--------

	Units	Qty		Unit Cost		Total Cost
CAPTIAL COSTS - AS/SVE System						
AS/SVE Well Drilling						
Private Utility Locate	ea	1	\$	2,000.00	\$	2,000.00
Mobilization	ls	1	\$	2,000.00	\$	2,000.00
Montana well logs	ea	11	\$	100.00	\$	1,100.00
Per Diem, drill crew	ea	2	\$	800.00	\$	1,600.00
Set-un/cleanun/decon - sonic drill rig	hr	2	\$	450.00	\$	900.00
Drill & sample 6 25-inch	ft	165	\$	15.00	\$ \$	2 475 00
Borehole sealing and natch	ft	165	¢	8.00	¢	1 320 00
1-inch schedule 40 PVC well construction (AS Well)	ft	165	¢	20.00	¢	3 300 00
Well development (0.5 hour per AS installation)	br	5 5	¢	20.00	¢	1 237 50
Support Equipment (ckid steer)	dav.	J.J 7	-ዋ ተ	ZZJ.00	ф ф	1,257.50
Support Equipment (Skiu-Steer)	uay	Z	Þ	500.00	\$ \$	16 932 50
Subtotal					Ψ	10,952.50
AC (C)/E Equipment and Materials						
AS/SVE Equipment and Materials			+	11 000 00	+	11 000 00
Remediation Building (Procurement, Fabrication, and Retrofitting)	ls	1	\$	41,000.00	\$	41,000.00
AS/SVE Vacuum Pump and Components (PLC, K/O Tank)	ls	1	\$	120,000.00	\$	120,000.00
Misc Building Components (Lighting, heaters, louvers)	ls	1	\$	7,000.00	\$	7,000.00
Vapor Phase Granular Activated Carbon Tanks	ea	3	\$	27,000.00	\$	81,000.00
Shipping	ls	1	\$	40,000.00	\$	40,000.00
AS Conveyance piping (1-inch, HPDE)	ft	500	\$	3.00	\$	1,500.00
SVE Conveyance piping (3-inch, HPDE)	ft	300	\$	10.00	\$	3,000.00
Subtotal					\$	293,500.00
AS/SVE Installation and Startup						
Private Utility Locate	ea	1	\$	2,000.00	\$	2.000.00
Mohilization/demohilization	ls	1	\$	6 800 00	\$	6 800 00
Trenching	BCY	200	\$	50.00	\$	10 000 00
Backfill of Excavated Area	LCY	250	¢	25.00	¢	6 250 00
Electric Service Installation	le	250	¢	20,000,00	ф ф	20,000,00
Creation of Romediation Building Red (Includes Material)	IS CV	50	-ዋ ተ	20,000.00	ф ф	20,000.00
Vener Complete (TO 15)	51	10	⊅ ¢	30.00	P ¢	2,300.00
Vapor Samples (10-15)	sample	12	\$	400.00	\$	4,800.00
Remedaltion Building Fence	LF	110	\$	40.00	\$	4,400.00
Subtotal					\$	54,750.00
						-,
Waste Management						
Transportation and disposal of excavated material	ton	400	\$	70.00	\$	28.000.00
Subtotal			т		\$	28,000,00
Subtotal					Ψ	20,000.00
Other Canital Costs						
Permitting (Air Local State)	lc	1	¢	32 000 00	¢	32 000 00
Survoyor	lc	1	ф ф	3 000 00	ф ф	3 000 00
Sulveyor	15	1	Þ	3,000.00	Þ	3,000.00
Sublola					Þ	55,000.00
Construction Occupient					*	70,000,00
Construction Oversight					\$	70,000.00
					-	
TOTAL CAPITAL COSTS - AS/SVE					Ş	498,182.50
ANNUAL O&M COSTS - AS/SVE						
AS/SVE Operations, Maintenance, and Monitoring						
Ramboll OM&M Labor	hr	208	\$	70.00	\$	14,560.00
Oil and Filter Changes	each	4	\$	1,400.00	\$	5,600.00
Miscellaneous equipment rental and repair (includes material)	ls	1	\$	1,200.00	\$	1,200.00
Vapor Phase Granular Activated Carbon Change Out	ls	1	\$	15,000.00	\$	15,000.00
Quarterly Vapor Samples (TO-15)	sample	4	\$	400.00	\$	1,600.00
Ouarterly GW Samples (SVOCs, VOCs, Metals, MNA)	sample	8	\$	500.00	\$	4,000.00
Subtotal		-	- r		\$	41,960.00
					Ŧ	
AS/SVE Annual Utilities						
Flectric	kwh	220 000	\$	0.10	\$	22 000 00
Subtotal	NYVII	220,000	Ψ	0.10	+ ¢	22,000.00
Subtotal					Ψ	22,000.00
Annual OM&M Total - AS/SVE within Engineered Trench					¢	63 060 00
Annual Origin Total - AS/SVE Within Engineered Trench					P	03,900.00

Appendix G Alternative 2 -DPE Cost Analysis MW-41 AREA CMR Great Falls, Montana

SUMMARY OF ALTERNATIVE 2: DPE

	Units	s Qty	I	Jnit Cost		Total Cost
CAPTIAL COSTS - DPE						
DPE Well Drilling						
Private Utility Locate	ea	1	\$	2,000	\$	2,000
Mobilization/demobilization	ls	1	\$	10,000	\$	10,000
Montana well logs	ea	11	\$	100	\$	1,100
Per Diem, drill crew	ea	10	\$	800	\$	8,000
Set-up/cleanup/decon - sonic drill rig	hr	10	\$	700	\$	7,000
Drill & sample 8.25-inch	ft	165	\$	70	\$	11,550
Borehole sealing and patch	ft	165	\$	20	\$	3,300
4-inch schedule 40 PVC well construction	ft	165	\$	50	\$	8,250
12-inch flush grade completion	ea	11	\$	700	\$	7,700
Well development (1 hour per installation)	hr	11	\$	400	\$	4,400
Support Equipment (skid-steer)	day	9	\$	500	\$	4,500
Sub	ototal				\$	67,800
DPE Equipment and Materials						
Remediation Building (Procurement, Fabrication, and Retrofitt	ting) ls	1	\$	48,000	\$	48,000
DPE Vacuum Pump and Components (PLC, K/O Tank)	ls	1	\$	150,000	\$	150,000
Misc Building Components (Lighting, heaters, louvers)	ls	1	\$	7,000	\$	7,000
API OWS	ls	1	\$	21,000	\$	21,000
LNAPL Tank (Double Wall)	ls	1	\$	3,000	\$	3,000
Thermal Oxidizer	ls	1	\$	335,000	\$	335,000
Shipping	ls	1	\$	40,000	\$	40,000
Conveyance piping (3-inch, HPDE)	ft	1500	\$	4	\$	6,000
Sub	ototal				\$	610,000
DPE Installation and Startup						
Mobilization/demobilization	ls	1	\$	20,000	\$	20,000
Trenching	BCY	300	\$	30	\$	9,000
Sand Backfill around Pipe	LCY	100	\$	68	\$	6,800
Backfill of Excavated Soil	LCY	250	\$	20	\$	5,000
Gas Line	ls	1	\$	10,000	\$	10,000
Electric Service Installation	ls	1	\$	50,000	\$	50,000
Creation of Remediation Building Pad (Includes Material)	SY	50	\$	100	\$	5,000
DPE Remedaition Building Fence	LF	150	\$	40	\$	6,000
Effluent Water Samples (SVOCs, VOCs, and Metals)	samp	le 4	\$	300	\$	1,200
Vapor Sample (TO-15)	samp	le 12	\$	400	\$	4,800
Sub	total				\$	117,800
					·	,
DPE Waste Management						
55-gallon drums (soil cuttings)	ea	34	\$	125	\$	4,250
Development water			\$	-	\$	-
Sub	ototal				\$	4,250
Other Capital Costs						
Waste Water Treatment Sewer Line (Tie-in to Truck Rack)	ls	1	\$	200.000	\$	200.000
Air Treatment During 30-Day Start-Up	ls	1	\$	40,000	\$	40,000
Permitting (Air, Local, State)	ls	1	\$	60,000	\$	60,000
Surveyor	ls	1	\$	5,000	\$	5.000
Sub	total		Ŧ	-,000	\$	305.000
					т	
Construction Oversight					\$	104.000
					т	,
TOTAL CAPITAL COSTS - DPE					\$	1,208,850

Appendix G Alternative 2 -DPE Cost Analysis MW-41 AREA CMR Great Falls, Montana

SUMMARY OF ALTERNATIVE 2: DPE	Unite	Otv	Unit Cost		Total Cost
	Units	QLy	Unit Cost		
ANNUAL O&M COSTS - DPE					
DPE Operations, Maintenance, and Monitoring					
OM&M Labor	hr	200	\$ 70.00	\$	14,000.00
Oil and Filter Changes	each	4	\$ 3,000.00	\$	12,000.00
Miscellaneous equipment rental and repair (includes material)	ls	1	\$ 14,000.00	\$	14,000.00
Monthly Vapor Samples (TO-15)	sample	12	\$ 400.00	\$	4,800.00
Quarterly Effluent water Samples (SVOCs, VOCs, and Metals)	sample	8	\$ 300.00	\$	2,400.00
Quarterly GW Samples (SVOCs, VOCs, Metals, MNA)	sample	8	\$ 500.00	\$	4,000.00
Subtotal				\$	51,200.00
DPE Annual Utilities					
Electric	kwh	400,000	\$ 0.10	\$	40,000.00
Natural Gas	1000 cu ft	500	\$ 6.20	\$	3,100.00
Subtotal				\$	43,100.00
				·	-
Annual OM&M Total - DPE				\$	94,300.00

Appendix G
Alternative 2 - Product Recovery and Passive Treatment Trench Cost Analysis
MW-41 AREA
CMR
Great Falls, Montana

SUMMARY OF ALTERNATIVE 2: PRODUCT RECOVERY AND PASS	IVE TREAT	MENT T	REN	ICH		
	Units	Qty		Unit Cost		Total Cost
CAPTIAL COSTS - PRODUCT RECOVERY AND PASSIVE TREATME	NT TRENC	H				
Bench Scale Testing of Remediation Products						
Private Utility Locate	ls	1	\$	2,000.00	\$	2,000.00
Mobilization/demobilization for drilling	ls	1	\$	10,000.00	\$	10,000.00
Montana well logs	ea	1	\$	100.00	\$	100.00
Per Diem, drill crew	ea	1	\$	700.00	\$	700.00
Drill & sample 8.25-inch	ft	15	\$	70.00	\$	1,050.00
Borehole sealing and patch	ft	15	\$	20.00	\$	300.00
Set-up/cleanup/decon - sonic drill rig	hr	2	\$	700.00	\$	1,400.00
Laboratory	ea	1	\$	5,000.00	\$	5,000.00
Equipment and Misc. Supplies	ea	1	\$	1,000.00	\$	1,000.00
Subtotal					\$	19,550.00
Product Recovery Equipment and Passive Treatment Materials						
PetroFix (includes transport and delivery)	lb	14000	\$	4.50	\$	63.000.00
ORC Advanced	lb	1212	\$	60.00	\$	72,720.00
Photovoltaic Powered Passive Skimmer Pump	ea	3	\$	10.000.00	\$	30.000.00
Product Recovery Tank and Telemetry	ea	1	ŝ	10.000.00	\$	10.000.00
Subtotal		-	T	20,000100	\$	165.720.00
PRB Installation						
Mobilization/demobilization	ls	1	\$	10,000.00	\$	10,000.00
Trenching	BCY	150	\$	25.00	\$	3,750.00
Backfill of Excavated Area With Gravel and Remediation Products	LCY	200	\$	50.40	\$	10,080.00
Subtotal					\$	23,830.00
Product Recovery and Monitoring Well Drilling						
Private Utility Locate	ea	1	\$	2,000.00	\$	2,000.00
Mobilization/demobilization	ls	1	\$	10,000.00	\$	10,000.00
Montana well logs	ea	5	\$	100.00	\$	500.00
Per Diem, drill crew	ea	4	\$	800.00	\$	3,200.00
Set-up/cleanup/decon - sonic drill rig	hr	5	\$	700.00	\$	3,500.00
Drill & sample 8.25-inch	ft	75	\$	70.00	\$	5,250.00
Borehole sealing and patch	ft	75	\$	20.00	\$	1,500.00
4-inch schedule 40 PVC well construction	ft	75	\$	50.00	\$	3,750.00
12-inch flush grade completion	ea	5	\$	700.00	\$	3,500.00
Well development (1 hour per installation)	hr	5	\$	400.00	\$	2,000.00
Support Equipment (skid-steer)	day	4	\$	500.00	\$	2,000.00
Subtotal					\$	37,200.00
Waste Management						
55-gallon drums (soil cuttings)	ea	10	\$	125.00	\$	1.250.00
Excavated Material Disposal	ton	400	\$	65.00	\$	26.000.00
Subtotal			Ŧ	00100	\$	27,250.00
					Ŧ	_,
TOTAL CAPITAL COSTS - Product Recovery and Passive Treatm	ent Trench				\$	273,550.00
Annual Product Recovery Operations, Maintenance, and Monito	ring					
Ramboll OM&M Labor	hr	160	\$	70.00	\$	11 200 00
Miscellaneous equipment rental and repair (includes material)	ls	1	+ ¢	5.000 00	\$	5,000 00
Quarterly GW Samples (SVOCs, VOCs, Metals, MNA)	-13 	8	₽ \$	300.00	₽ \$	2,400.00
Disposal of Recovered Fluid	Month	12	+ ¢	500.00	\$	6,000 00
Subtotal	1101101	**	Ψ	500.00	\$	24,600.00
					+	,555.55
Annual OM&M Total - Product Recovery and Passive Treatment	Trench				\$	24,600.00

Annual OM&M Total - Product Recovery and Passive Treatment Trench